
INTRODUCTION
Quantifying the rate at which rock erodes and sediment is produced is

fundamental to understanding Earth as a system. Rates of sediment produc-
tion (rock erosion) are typically inferred from estimates of sediment yield
either measured as a flux of sediment past a gauging station or determined
by measuring the accumulation of sediment in a reservoir (Schumm, 1963;
Judson and Ritter, 1964; Meade, 1969; Trimble, 1977; Saunders and Young,
1983; Schick and Lekach, 1993). Equating sediment yield and sediment
production implies steady-state behavior and assumes no change in the vol-
ume of sediment stored within a basin, an assumption repeatedly questioned
(Meade, 1969; Trimble, 1977, 1999; Walling, 1983; Bull, 1991). 

We compare 33 yr of sediment yield data from Nahal Yael to long-term,
time-integrated rates of sediment generation determined by measuring in situ
produced cosmogenic 10Be and 26Al. Significant differences between rates
of sediment generation and sediment yield indicate that Nahal Yael, an in-
tensively instrumented, hyperarid basin in southern Israel (Schick and
Lekach, 1993), is currently exporting more sediment than is being generated
by the weathering of bedrock. These data and others (Trimble, 1977; Brown
et al., 1995; Clapp et al., 1997) suggest that over human time scales, balanced
sediment production and yield may be the exception rather than the rule. 

BACKGROUND
Nahal Yael occupies a small (0.6 km2), mountainous drainage basin in

the Negev Desert, Israel (Figs. 1 and 2). The basin is underlain by Pre-
cambrian rock (Shimron, 1974; Schick and Lekach, 1993), gneissic granite
in the north, schist in the middle, and amphibolite to the south (Fig. 2). In the
northern (granite) and middle (schist) sections, exposed bedrock dominates

the uplands; significant colluvial cover is limited to bedrock hollows and the
lowermost parts of hillslopes (Fig. 1). Sediment storage within these sec-
tions is confined to isolated colluvial deposits and alluvial terraces (gener-
ally <3 m thick) along the narrow valley bottom (Fig. A1). In contrast, hill-
slopes in the southern section (amphibolite) have bedrock exposed on the
top 10–20 m and substantial colluvial cover over the lower hillslopes.
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Figure 1. Upstream view of Nahal Yael drainage basin from near sample
site NY7 (see Fig. 2). Field of view is 600 m.



In 1967, Hebrew University researchers (Bull and Schick, 1979;
Schick and Lekach, 1993) began constructing a sediment budget for Nahal
Yael using automatically collected hydrologic and suspended-sediment
data, estimates of bedload yield from scour chains and pebble tracing, and
surveys of sediment deposition behind an earthen dam constructed in 1977
to trap and monitor sediment yields with nearly 100% efficiency (Schick
and Lekach, 1993). Over the 33 yr monitoring history, 14 yr had no flow
and 8 yr had events during which flow did not exit the basin (Schick and
Lekach, 1993). In October 1997, a storm with an estimated recurrence
interval >50 yr delivered >460 t of sediment to the mouth of the basin. The
33 yr record, including the large storm of 1997 and the 14 yr without flow,
results in an integrated sediment yield of 138 ± 19 t·km–2·yr–1. The average
sediment yield excluding the large storm of 1997 is 113 ± 16 t·km–2·yr–1.

We measured 10Be and 26Al in quartz to determine the maximum limit-
ing, long-term rate at which sediment is generated and to identify areas
where sediment is generated and stored. The assumptions and limitations of
such measurements and their interpretations were discussed by Lal (1991),
Bierman and Steig (1996), Bierman and Turner (1995), Brown et al. (1995),
Granger et al. (1996), Clapp et al. (1997, 1998), and Small et al. (1999).

SAMPLING LOCATIONS AND METHODS
We measured nuclide concentrations in bedrock outcrops, hillslope

colluvium, alluvial terraces, and channel alluvium (Figs. 2 and 3; TableA—

see footnote 1). Laboratory methods are described in AppendixA (see foot-
note 1). Individual nuclide measurements discussed in the text include an
analytical error of 1 σ. 

We sampled channel alluvium at four locations along Nahal Yael
(Fig. 2), using the channel as an integrator of different sediment sources and
associated 10Be and 26Al from throughout the drainage basin. As flow within
the channel travels down the basin, sediment from terraces and tributaries
along the channel’s length is entrained and mixed. As the channel cuts
through alluvial deposits, it temporally integrates sediment deposited by
many different depositional events. 

Bedrock outcrops were sampled in three lithologically distinct transects
(Fig. 2). Within the granitic terrain, where quartz is uniformly distributed
throughout the bedrock, three samples were collected from a single hillslope at
evenly spaced, 20 m elevation intervals. Within the schist terrain, where quartz
is concentrated in crosscutting veins that are no more or less resistant to weath-
ering than the surrounding rock, we collected three samples from the quartz
veins, keeping as close to 20 m elevation spacing as possible. In the amphibo-
lite terrain, quartz is also concentrated in veins; however, shorter hillslopes and
fewer quartz veins limited us to only two samples ~20 m apart in elevation. 

Three composite samples of hillslope colluvium, each composed of
samples taken at ~1 m intervals across the base of the slope but above any
channel-derived sediment, were collected from hillslopes below the three
bedrock transects (Fig. 2). Two composite samples of alluvial terrace sediment
were collected by mixing subsamples collected at evenly spaced depth incre-
ments (~10 cm) in the alluvium exposed by channel incision. Each sediment
sample was divided into three grain-size fractions; we find no relationship be-
tween nuclide concentration and sediment grain size (Fig. B; see footnote 1).

Measured 26Al/10Be ratios (µ = 5.9 ± 0.48) (Fig. 3, inset) are consistent
with the currently accepted production ratio of ~ 6:1 (Nishiizumi et al., 1989),
indicating that the sediment and bedrock we sampled do not have long-term
(>100 k.y.), complex histories of burial and exhumation. Because the two iso-
topes are well correlated (r2 = 0.95), we present primarily the 10Be measure-
ments; however, the 26Al measurements are used in all calculations (Table 1). 

RESULTS AND DISCUSSION
Bedrock Erosion and Sediment Generation

We use nuclide concentrations in geomorphic features to identify sig-
nificant sources of sediment to the channel and compare relative rates of
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processes shaping desert environments. Average 10Be concentrations in
bedrock outcrops (2.18 ± 0.31 × 105 atoms·g–1, n = 8) are higher than those
in hillslope colluvium (1.54 ± 0.30 × 105 atoms·g–1, n = 3), suggesting that
exposed bedrock weathers more slowly (more nuclide accumulation) than
bedrock beneath a colluvial cover (Fig. 3). These observations are consistent
with previous cosmogenic measurements (Bierman, 1994; Clapp et al.,
1997, 1998; Small et al., 1999). 

Lower average nuclide concentrations in colluvium could result from
cosmic-ray shielding (less exposure) by material now eroded. However, the
6.3 × 104 atoms·g–1 difference between exposed bedrock and colluvium
would require shielding by colluvium deeper than 50 cm, far thicker than
we observed on the steep slopes of Nahal Yael. Most likely, the nuclide
abundance difference can be attributed to shielding beneath shallow (centi-
meters to decimeters) colluvium coupled with associated increases in both
physical and chemical weathering, the result of increased water retention
and moisture-bedrock contact time beneath a cover of colluvium (Bull,
1991; Small et al., 1999). 

Nuclide concentrations, and thus erosion rates, are not statistically dis-
cernible between the three lithologies (Fig. 4). Nuclide concentrations
measured in the granitic transect, where quartz is uniformly distributed,
imply a positive relationship between elevation above the stream channel and
nuclide concentration (Fig. 4, inset), perhaps reflecting a period of time when
the lower granitic hillslopes held a cover of colluvium consistent with sug-
gestions of a late Pleistocene–early Holocene stripping of hillslope collu-
vium (Bull and Schick, 1979; Bull, 1991). Schist and amphibolite transects
show no significant relationship between nuclide abundance and elevation.

Dynamics of Sediment Production and Transport
Nuclide data allow us to fingerprint sediment sources and suggest that

most sediment in Nahal Yael is supplied by the middle and lower parts of the
basin; the upper part of the Nahal Yael basin has more stable colluvial cover
and contributes less sediment to the channel. The most important sediment
source is colluvium stored in hollows and at the bottom of the slopes. Other
sediment sources (exposed bedrock and terraces) contribute significantly
less sediment.

Upper Basin. In the upper amphibolitic basin, nuclide concentra-
tions in widespread hillslope colluvium (2.16 ± 0.06 × 105 atoms· g–1,
NY15) are higher than those measured in colluvium of the lower (granite
and schist) parts of the basin (1.21 ± 0.02 to 1.28 ± 0.02 × 105 atoms·g–1,
NY12 and NY8, respectively; Fig. 4). Average nuclide concentrations
from the upper basin bedrock (2.33 ± 0.50 × 105 atoms·g–1, NY13 and
NY14) are only slightly greater than in the upper basin colluvium (2.16 ±
0.06 × 105 atoms·g–1, NY15), indicating that exposed bedrock may be a
significant source of sediment to the upper basin hillslopes. The nuclide
concentration (1.42 ± 0.09 × 105 atoms·g–1), measured in channel allu-
vium exiting the upper part of the basin (NY18), is greater than concen-

trations measured lower in the basin (1.22 ± 0.04 to 1.32 ± 0.02 × 105

atoms·g–1, NY20 and NY4, respectively), consistent with longer colluvial
residence time in the upper basin. 

Middle Basin. In the middle basin, sediment is currently stored along
the valley bottom and to a lesser degree on the lower hillslopes in discon-
tinuous alluvial terraces shown to be Pleistocene in age by optically stimu-
lated luminescence dating (Lekach et al., 1999). Consistent with these
observations, nuclide data (Fig. 4) suggest that there is some storage of
sediment in alluvial terraces, because nuclide concentrations in these
terraces (1.45 ± 0.11 and 1.66 ± 0.06 × 105 atoms·g–1, NY16 and NY17,
respectively) are slightly greater than in samples from the sediment-
supplying hillslopes above (1.21 ± 0.02 × 105 atoms· g–1, NY12). The
difference between NY17 (terrace) and NY12 (colluvium) is significant at
the 2 σ level, and the difference between NY16 (terrace) and NY12 (collu-
vium) is significant at 1 σ but not 2 σ. The nuclide concentration of the
channel alluvium (1.24 ± 0.04 × 105 atoms·g–1, NY19) is similar to the
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hillslope samples, but less than terrace samples, suggesting that hillslopes
supply more sediment to the channel than alluvial terraces. 

The difference in concentrations between the colluvium and the
terrace sediment (~3.0 × 104 atoms·g–1) may reflect cosmic-ray dosing of
terrace alluvium either prior to or following deposition. If we assume that
the terraces were deposited rapidly at some point in the past, and integrate
nuclide production (5.77 atoms of 10Be·g–1·yr–1) over the average terrace
depth (~2 m), assuming sediment density of 1.6 g·cm–3, we calculate rapid
deposition of alluvial terraces ca. 11 ka, consistent with the hypothesized
late Pleistocene–early Holocene stripping of hillslopes in response to cli-
mate change (Bull and Schick, 1979; Bull, 1991). Alternatively, the alluvial
terraces could have been deposited steadily, during which time nuclide ac-
cumulation continually occurred (Clapp et al., 1997). Steady-state deposi-
tion at ~125 m·m.y.–1 over ~16 k.y. would account for the additional ~3.0 ×
104 atoms·g–1 measured in the ~2 m of alluvium. 

Lower Basin. In the lower basin, colluvium resides only in hollows
and isolated, thin deposits at the base of the slopes, suggesting minimal stor-
age and short residence time. Consistent with short, near-surface residence,
the average nuclide concentration of the hillslope colluvium in the lower
basin (Fig. 4) is low (1.28 ± 0.02 × 105 atoms·g–1, NY8). Channel alluvium
(1.25 ± 0.03 × 105 atoms·g–1, average of NY4 and NY20) and hillslope col-
luvium (NY8) nuclide concentrations are similar, suggesting that in the
lower basin hillslopes supply most sediment to the channel of Nahal Yael. 

Sediment Production Versus Sediment Yield
From nuclide concentrations measured in the channel sediment at the

outlet of Nahal Yael (NY4 and NY20), we estimate (using Bierman and
Steig [1996] and nuclide production rate estimates of Nishiizumi et al.,
1989) a maximum, limiting, basin-wide sediment generation rate of 74 ±
16 t·km–2·yr–1, consistent with rates determined for other regions using
similar methods (Table 1). This is likely an overestimate, because recent
work suggests that long-term production rates of 10Be and 26Al are
10%–15% lower (Clark et al., 1995).

Sediment yield from Nahal Yael (113–138 t·km–2·yr–1), calculated
from the sediment budget, is at least 53%–86% greater than the long-term
rate of sediment generation estimated using 10Be and 26Al (Table 1). The
difference between sediment yield and generation rates, along with the iso-
topic data, suggest that sediment is being mined from colluvium stored dur-
ing a period when sediment generation outpaced sediment yield. Two of
three similar studies elsewhere (Table 1) also suggest that current sediment
yields exceed long-term rates of sediment generation (Brown et al., 1995;
Granger et al., 1996; Clapp et al., 1997). These data show that the assump-
tion of short-term landscape steady state is likely invalid. Episodic periods
of sediment aggradation are followed by downcutting and sediment evacua-
tion, possibly resulting from changes in climate or land use (Bull and
Schick, 1979; Bull, 1991). 

The measured differences between rates of sediment generation and
sediment yield illustrate the danger of using short-term sediment yields to
estimate long-term, basin-wide rates of bedrock erosion. Cosmogenic
nuclides can provide direct estimates of long-term, basin-scale sediment
generation rates and fingerprint significant sediment storage and source
areas within drainage basins. These nuclides are invaluable in quantitatively
addressing fundamental questions in arid-region geomorphology and may
be used to identify temporal changes in sediment generation. 
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