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[1] We use a large and diverse data set from mountain streams around the world to
explore relationships between reach-scale channel morphology and control variables. The
data set includes 177 step-pool reaches, 44 plane-bed reaches, and 114 pool-riffle reaches
from the western United States, Panama, and New Zealand. We performed several
iterations of stepwise discriminant analysis on these data. A three-variable discriminant
function using slope (S), D84, and channel width (w) produced an error rate of 24% for the
entire data set. Seventy percent of plane-bed reaches were correctly classified (16%
incorrectly classified as pool-riffle and 14% incorrectly classified as step-pool). Sixty-
seven percent of pool-riffle channels were correctly classified (31% incorrectly
classified as plane-bed and 2% as step-pool). Eighty-nine percent of step-pool reaches
were correctly classified (9% incorrectly classified as plane-bed and 2% as pool-riffle).
The partial R2 values and F tests indicate that S is by far the most significant single
explanatory variable. Comparison of the eight discriminant functions developed using
different data sets indicates that no single variable is present in all functions, suggesting
that the discriminant functions are sensitive to the specific stream reaches being analyzed.
However, the three-variable discriminant function developed from the entire data set
correctly classified 69% of the 159 channels included in an independent validation data
set. The ability to accurately classify channel type in other regions using the three-variable
discriminant function developed from the entire data set has important implications for
water resources management, such as facilitating prediction of channel morphology using
regional S-w-D84 relations calibrated with minimal field work.

Citation: Wohl, E., and D. Merritt (2005), Prediction of mountain stream morphology, Water Resour. Res., 41, W08419,

doi:10.1029/2004WR003779.

1. Introduction

[2] We define mountain streams as occurring in moun-
tainous areas and having an average gradient of�0.002 m/m
[Wohl, 2000]. Stream channels formed at these steep
gradients tend to have very coarse-grained and relatively
immobile substrate and limited sediment supply. Under
these conditions of high boundary roughness, flow is very
turbulent relative to low-gradient river channels formed
from finer-grained material [Jarrett, 1984; Bathurst, 1985,
1997; Wohl and Thompson, 2000; Curran and Wohl, 2003].
Bedrock and narrow valley bottoms can limit lateral channel
mobility. Channel longitudinal profiles are likely to be
segmented as a result of changes in underlying rock type
or structure, tectonic activity, glacial history [Wohl et al.,
2004], beaver dams [Butler, 1995], or episodic introduction
of wood [Montgomery et al., 1995] or sediment from hillside
and tributary mass movements [Wohl and Pearthree, 1991;
Benda et al., 2003; Montgomery et al., 2003]. Channel
classification systems that apply to the reach-scale, rather

than entire catchments, most effectively describe spatially
variable mountain streams [Baker and Walford, 1995]. We
use ‘‘reach’’ to indicate a length of channel at least ten times
the average channel width and having relatively consistent
morphology.
[3] One of the more widely used systems classifies

mountain streams into cascade, step-pool, plane-bed, and
pool-riffle channels based on the presence and type of
bed forms [Montgomery and Buffington, 1997]. Step-pool
channels have longitudinal steps formed by bedrock, clasts,
or wood organized into discrete channel-spanning accumu-
lations that separate plunge pools. Plane-bed channels are
planar channels formed in gravel-to-boulder-sized clasts.
Pool-riffle channels have bars, pools and riffles that create
lateral and longitudinal undulations in the channel.
[4] Montgomery and Buffington [1997] infer that bed form

characteristics reflect a specific roughness configuration
adjusted to the relative magnitude of sediment supply and
transport capacity. Each channel type also has distinct
responses to disturbance, including frequency of channel-
forming discharges and response to increased water or
sediment yield. Higher-gradient channel types are designated
transport reaches, for example. These reaches are expected to
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transmit moderate increases in sediment yield downstream
with relatively little channel change, whereas lower-gradient
channel types are response reaches in which channel mor-
phology is modified in response to increased sediment
supply. We chose the Montgomery-Buffington classification
system for use in this analysis because it is straightforward
to apply in the field and because categories within the
system reflect differences in channel processes that influence
response to disturbance.
[5] Montgomery and Buffington [1997] initially devel-

oped this classification system using data from Alaska,
Oregon, and Washington. Subsequent investigators have
found the system to be useful in classifying steep stream
channels around the world [Wohl, 2000]. Montgomery and
Buffington’s original data set indicated specific ranges of
gradient, shear stress and relative roughness for each
channel type: cascade channels are most common at
gradients greater than 0.065, step-pool channels at 0.03–
0.065, plane-bed channels at 0.015–0.03, and pool-riffle
channels at gradients less than 0.015. Expanding the orig-
inal data set to other geographic regions indicates greater
variability in gradient range for each channel type, although
the progression from cascade channels at the highest gra-
dients to pool-riffle channels at the lowest gradients appears
to be consistent [Chin, 1989; Grant et al., 1990; Chartrand
and Whiting, 2000].
[6] Most field investigators are well aware of these

patterns in channel morphology in relation to gradient.
However, it has not yet proven feasible to predict channel
type a priori given information about gradient or other
potential control variables in a drainage basin or a
region. Such a capability would be extremely useful for:
predicting channel response to disturbance [Montgomery
and Buffington, 1997;Miller and Benda, 2000; Benda et al.,
2003; Lancaster et al., 2003]; modeling river processes and
landscape evolution [Howard, 1998; Tucker et al., 2001];
and aspects of natural resources management from predict-
ing flood discharges and designing culverts [Jarrett and
Costa, 1982; Jarrett, 1989] to mapping habitat and explain-
ing the spatial distributions of aquatic and riparian species
or community types [Harris, 1988; Gomi et al., 2002; Moir
et al., 2004]. In this paper we use a large and diverse data
set from mountain streams around the world to explore
correlations between channel morphology and control
variables. We used discriminant analysis to develop a
discriminant criterion that we then use to (1) infer controls
on channel morphologic type and (2) develop methods of
predicting location within a drainage basin for specific
channel morphologic types.

2. Data Set and Methods

[7] The data set analyzed here consists of stream reaches
from mountainous regions of the United States (Alaska,
Arizona, Colorado, Idaho, Montana, Washington, Wyom-
ing), New Zealand, and Panama (Table 1). Most of the data
were originally collected by Wohl and her graduate students
for other research projects. Peter Whiting provided data
from Idaho and David Montgomery provided data from
Washington. The validation data set comes from streams in
New Mexico and Montana; these data were provided by
Mark Fonstad and Matt O’Connor. We visually identified
channels as step-pool, plane-bed or pool-riffle based on the

dominant bed forms. Natural channels exhibit a continuum
of morphology, with gradations between the channel types
distinguished here. We predominantly chose channel rea-
ches with a consistent bed form type. We also chose study
sites in which channel parameters appeared to reflect
dominantly fluvial processes (e.g., no recent evidence of
debris flows present at the study site). Channel reaches with
direct human effects (e.g., adjacent roads or timber harvest)
were avoided. Presence and abundance of wood in the
channel varied widely.
[8] Because the data were originally collected for other

purposes, the level of information varies between regional
subsets. The most complete subsets include reach gradient
(S); drainage area (A); bank-full discharge (Q), width (w),
depth (d) and velocity (v); streambed grain size distribution
(D50, D84); bed form type and dimensions; and channel
type. We then used these parameters to calculate hydraulic
and form variables, including shear stress (t), Darcy-
Weisbach friction factor (f), stream power per unit area (w),
total stream power (W), relative grain roughness (R/D84), and
relative form roughness (R/H, whereR is hydraulic radius and
H is bed form amplitude).
[9] ‘‘Bank-full’’ in this context represents a fairly

frequent discharge that recurs on average every 1–2 years.
We estimated bank-full channel dimensions using field
indicators that included changes in bank geometry or
vegetation, organic debris, or stains on the clasts or bedrock
along the channel margins. We indirectly estimated bank-
full discharge and velocity using the Manning equation with
a visually estimated roughness coefficient, n:

v ¼ 1=nð ÞR0:67S0:5 ð1Þ

where v is reach-averaged mean velocity (m/s), R is
hydraulic radius (m), and S is bed gradient (m/m). We
constrained field estimates of discharge with discharge-
drainage area relations developed from systematic gage
records where possible. More than half of the study sites
had multiple stream gages within the drainage basin. We
used these records to develop discharge-drainage area
regression curves for the mean annual peak flow. Field
estimates of bank-full discharge that deviated substantially
(>50%) from the regression line were reexamined and
adjusted to more closely match the regression if uncertainty
in field estimates warranted such adjustment.
[10] We obtained streambed grain size distribution with a

random walk clast count [Wolman, 1954]. Counts were
conducted on riffles for pool-riffle channels, and across
the entire streambed for the other channel types; the depth
of pools in pool-riffle channels generally precluded access
to the streambed.
[11] We calculated hydraulic variables using bank-full

values of relevant parameters:

t ¼ gRS ð2Þ

f ¼ 8gRSð Þ=v2 ð3Þ

w ¼ tv ð4Þ

W ¼ gQS ð5Þ
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where g is gravitational acceleration (9.8 m/s2), and g is the
specific weight of water (9800 N/m2).
[12] We developed two variables to represent the ratio of

driving forces (w and W) to substrate resistance (D84).
Variables w, W, and D84 were standardized (mean = 0 and
standard deviation = 1), and the ratios of the standardized
variables (composite variables) were used to compute unit
driving force to substrate resistance (w/D84) and total
driving force to substrate resistance (W/D84). Standardiza-
tion was used in this case, because w and W are in different
units than D84. Standardization makes the scaling of units
irrelevant by adjusting the means of all variables to 0 and
retaining the variability in the data. These composite vari-
ables were also used in the analyses.
[13] The initial data set used for discriminant analysis

includes 177 step-pool reaches, 44 plane-bed reaches, and
114 pool-riffle reaches (some reaches were subsequently
dropped because of missing variables). These data are
drawn from a larger composite data set that Wohl [2004]
used to examine the spatial limits of downstream hydraulic
geometry.
[14] We first conducted stepwise discriminant analysis on

the entire data set to determine the subset of the hydraulic
and morphologic variables that best discriminate between
channel types. We then developed discriminant functions
for a subset of individual regions to detect differences in
driving variables in geographically separated, geologically
and climatically distinct regions. The four largest regional
subsets of the data set are reaches sampled in Montana (n =
88, step-pool and pool-riffle), Panama (n = 40, step-pool
and pool-riffle), Washington (n = 50, all 3 channel types),
and New Zealand (n = 31, step-pool and plane-bed).
Discriminant functions from Montana, Panama, and Wash-
ington were each used to classify reaches in the other
regions in pairwise fashion. In addition, we used each of

these three discriminant functions to classify reaches in the
New Zealand data set.

3. Statistical Analyses

[15] We used stepwise discriminant analysis to derive a
discriminant criterion based on the combination of morpho-
logic, hydraulic, and composite variables that best separate
streams into the independently classified reach types (pool-
riffle, plane-bed and step-pool). Variable entry into and
retention in the discriminant model were based upon the
significance of the F statistic from analysis of covariance
between the groups (variables already in the model serving
as covariates [Johnson and Wichern, 1992]). Variables with
p < 0.1 were entered into the model; only those contributing
to the explanatory power of the model (significant at p < 0.1
after entry of covariates) were retained in the final model.
The function was then used to assign membership of each of
the stream reaches to one of the three morphological types
using the best subset of variables.
[16] After plotting frequency distributions and examining

a number of transformations, the following data were log10
transformed to more closely comply with the assumptions
of within group multivariate normality: reach gradient (S);
drainage area (A); bankfull discharge (Q), bankfull width
(w), bankfull depth (d) and bankfull velocity (v); streambed
grain size distribution (D50, D84), shear stress (t), Darcy-
Weisbach friction factor (f), stream power per unit area (w),
total stream power (W), and relative grain roughness (R/
D84).
[17] We evaluated the explanatory strength of the dis-

criminant function by determining the cross validation error
rate. In cross validation, each data point is successively
removed from the data set, a discriminant function is fitted
to the remaining data, the function is used to classify the

Table 2a. Classification Error Rates in Stepwise Discriminant Analysis: Test 2, Three-Variable Discriminant

Function From Entire Data Set Applied to Regional Subsets

Regional Subset Overall Error Rate Step-Pool Plane-Bed Pool-Riffle

Montana 15% 8% as plane-bed — 17% as plane-bed,
6% as step-pool

Panama 46% 31% as plane-bed,
19% as pool-riffle

— 42% as plane-bed

Washington 2 21% 0% 25% as step-pool 39% as plane-bed
New Zealand east and west 12% 4% as plane-bed 20% as pool-riffle —

Columns without data indicate that these channel types were not present in this regional data subset.

Table 2b. Classification Error Rates in Stepwise Discriminant Analysis: Test 3, Discriminant Function Developed From Three Regional

Data Subsets and Applied to a Fourth Regional Subset

Regional Subsets Subset Tested
Variables in

Discriminant Function
Overall

Error Rate Step-Pool Plane-Bed Pool-Riffle

Montana, Panama,
New Zealand

Washington 2 S 13% 13% as plane-bed 13% as step-pool 0% error

Montana, Panama,
Washington 2

New Zealand R/D84, f, S, v, w 60% 100% as plane-bed 20% as pool-riffle —

Panama, New Zealand,
Washington 2

Montana R/D84 33% 21% as pool-riffle,
79% as plane-bed

— 33% as plane-bed

Montana, New Zealand,
Washington 2

Panama R/D84 13% 44% as plane-bed,
56% as pool-riffle

— 13% as plane-bed
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removed data point, and finally the classification error rate
is determined.
[18] We performed several iterations of stepwise discrim-

inant analysis.
[19] 1. Using the entire data set, we (1) selected the

subset of variables that best discriminated channel type
(this produced a subset of 8 variables), (2) used stepwise
discriminant analysis to further reduce this subset to 4
variables that still produced effective discrimination and
low error rates, and (3) manually removed one additional
variable to arrive at the most parsimonious model for the
entire data set.
[20] 2. We tested the three-variable discriminant function

developed from the entire data set against four regional
subsets (Montana, Panama, New Zealand, Washington 2).
[21] 3. We developed a discriminant function using three

regional subsets and tested this function against a fourth
regional subset. We performed this iteration of analysis four
times.
[22] 4. We developed a discriminant function from a

single regional subset and tested this function against that
subset, against other regional subsets, and against the entire
data set. We performed these analyses for three regional
subsets (Montana, Panama, Washington 2).
[23] 5. Finally, we tested the discriminant function devel-

oped from the entire data set against independent data not
used in the original discriminant analysis (validation data set
from New Mexico and Montana 2). Our intent in
performing these multiple iterations was to evaluate consis-
tency in the variables chosen for the discriminant function
when using different data sets, and consistency in the error
rate associated with various discriminant functions.
[24] Following discriminant function analysis, we per-

formed canonical discriminant analysis (CDA) so that the
classified reaches could be plotted and examined relative to
the independent variables used in the function. In CDA,
linear combinations of the independent variables are derived
and, through maximizing multiple correlations between
groups, maximum separation between groups is achieved.
SAS version 9.1 was used for all statistical analyses (SAS
Institute, Cary, NC).

4. Results

[25] 1. In analyses of the entire data set (44 plane-bed,
114 pool-riffle, and 177 step-pool reaches), we fitted a
quadratic discriminant function (within covariance matrices)
using the eight variables selected in stepwise analysis. We
dropped 62 reaches (21 pool-riffle and 41 step-pool) from
the stepwise analysis because of missing data in one or more
of the variables included in model selection; we then
included these reaches in the development of a final
discriminant function. Variables included in the most inclu-
sive discriminant function for the entire data set include
(Wilks’ Lambda (l) and p value in parentheses): S (l =
0.52, p < 0.0001), D84 (l = 0.45, p < 0.0001), w (l = 0.38,
p < 0.0001), f (l = 0.35, p < 0.0001), t (l = 0.34, p <
0.0001), W/D84 (l = 0.32, p < 0.0001), d (l = 0.32, p <
0.0001), and R/D84 (l = 0.30, p < 0.0001). The overall
discriminant function is significant in that it does a good job
of classifying the three channel types (Wilks’ Lambda =
0.29, p < 0.0001, df = 16/526). Seventy-seven percent of the
reaches are correctly classified by the eight variable dis-T
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criminant function (cross validation classification error rate
23%). Thirteen percent of plane-bed reaches were incor-
rectly classified (2% as pool-riffle, 11% as step-pool), 20%
of pool-riffle reaches were incorrectly classified (all as

plane-bed), and 34% of step-pool reaches were incorrectly
classified (29% as plane-bed, 5% as pool-riffle).
[26] If the four least significant variables (t, W/D84, d,

and R/D84) are dropped from the discriminant function, the

Table 3. Correlation Coefficients (r), p Values, and Number of Observations (n) From Spearman Rank Correlations for Variables Used in

the Stepwise Discriminant Analysisa

Q S d w v D50 D84 R/D84 f t w W w/D84 W/D84

A
r 0.64 �0.67 0.58 0.73 0.43 0.08 �0.01 0.49 �0.47 �0.18 �0.07 0.45 �0.13 0.26
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.1394 0.8162 <0.0001 <0.0001 0.0011 0.2687 <0.0001 0.0496 <0.0001
n 276 334 334 334 276 331 331 331 276 334 236 334 236 294

Q
r 1.00 �0.53 0.91 0.88 0.83 0.46 0.32 0.51 �0.62 0.29 0.56 0.92 0.11 0.84
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0827 <0.0001
n 276 276 276 276 276 273 273 273 276 276 236 276 236 236

S
r �0.53 1.00 �0.49 �0.63 �0.33 0.20 0.28 �0.69 0.63 0.52 0.47 �0.15 0.41 0.01
p <0.0001 <0.0001 <0.0001 <0.0001 0.0003 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0056 <0.0001 0.8945
n 276 335 335 335 276 332 332 332 276 335 236 335 236 295

d
r 0.91 �0.49 1.00 0.82 0.72 0.42 0.34 0.52 �0.51 0.33 0.55 0.81 0.19 0.64
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.003 <0.0001
n 276 335 335 335 276 332 332 332 276 335 236 335 236 295

w
r 0.88 �0.63 0.82 1.00 0.58 0.36 0.30 0.43 �0.55 0.07 0.20 0.72 �0.14 0.53
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.2022 0.0019 <0.0001 0.0349 <0.0001
n 276 335 335 335 276 332 332 332 276 335 236 335 236 295

v
r 0.83 �0.33 0.72 0.58 1.00 0.45 0.30 0.38 �0.73 0.37 0.78 0.85 0.33 0.75
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
n 276 276 276 276 276 273 273 273 276 276 236 276 236 236

D50
r 0.46 0.20 0.42 0.36 0.45 1.00 0.93 �0.43 �0.11 0.52 0.74 0.60 0.00 0.43
p <0.0001 0.0003 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0724 <0.0001 <0.0001 <0.0001 0.987 <0.0001
n 273 332 332 332 273 332 332 332 273 332 236 332 236 295

D84
r 0.32 0.28 0.34 0.30 0.30 0.93 1.00 �0.57 �0.03 0.53 0.65 0.53 �0.12 0.28
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.6515 <0.0001 <0.0001 <0.0001 0.0753 <0.0001
n 273 332 332 332 273 332 332 332 273 332 236 332 236 295

R/D84
r 0.51 �0.69 0.52 0.43 0.38 �0.43 �0.57 1.00 �0.47 �0.22 �0.18 0.21 0.28 0.30
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0044 <0.0001 <0.0001 <0.0001
n 273 332 332 332 273 332 332 332 273 332 236 332 236 295

f
r �0.62 0.63 �0.51 �0.55 �0.73 �0.11 �0.03 �0.47 1.00 0.06 �0.13 �0.50 0.21 �0.25
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0724 0.6515 <0.0001 0.3567 0.0453 <0.0001 0.0013 <0.0001
n 276 276 276 276 276 273 273 273 276 276 236 276 236 236

t
r 0.29 0.52 0.33 0.07 0.37 0.52 0.53 �0.22 0.06 1.00 0.79 0.55 0.44 0.44
p <0.0001 <0.0001 <0.0001 0.2022 <0.0001 <0.0001 <0.0001 <0.0001 0.3567 <0.0001 <0.0001 <0.0001 <0.0001
n 276 335 335 335 276 332 332 332 276 335 236 335 236 295

w
r 0.56 0.47 0.55 0.20 0.78 0.74 0.65 �0.18 �0.13 0.79 1.00 0.85 0.56 0.70
p <0.0001 <0.0001 <0.0001 0.0019 <0.0001 <0.0001 <0.0001 0.0044 0.0453 <0.0001 <0.0001 <0.0001 <0.0001
n 236 236 236 236 236 236 236 236 236 236 236 236 236 236

W
r 0.92 �0.15 0.81 0.72 0.85 0.60 0.53 0.21 �0.50 0.55 0.85 1.00 0.33 0.84
p <0.0001 0.0056 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
n 276 335 335 335 276 332 332 332 276 335 236 335 236 295

w/D84
r 0.11 0.41 0.19 �0.14 0.33 0.00 �0.12 0.28 0.21 0.44 0.56 0.33 1.00 0.53
p 0.0827 <0.0001 0.003 0.0349 <0.0001 0.987 0.0753 <0.0001 0.0013 <0.0001 <0.0001 <0.0001 <0.0001
n 236 236 236 236 236 236 236 236 236 236 236 236 236 236

W/D84
r 0.84 0.01 0.64 0.53 0.75 0.43 0.28 0.30 �0.25 0.44 0.70 0.84 0.53 1.00
p <0.0001 0.8945 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
n 236 295 295 295 236 295 295 295 236 295 236 295 236 295

aVariables shown include drainage area (A), bankfull discharge (Q), reach gradient (S), depth (d), width (w), velocity (v), streambed grain size
distribution (D50, D84), relative grain roughness (R/D84), Darcy-Weisbach friction factor (f), shear stress (t), stream power per unit area (w), total stream
power (W), and the ratio of unit driving force to substrate resistance (w/D84) and total driving force to substrate resistance (W/D84).
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function is reduced to the four variables S, D84, w, and f. Of
these, f is the only variable not directly measured in the field
data used here. For the sake of parsimony and greater
accuracy, we also removed f to arrive at a discriminant
function using only S (l = 0.42, partial R2 = 0.58), D84 (l =

0.36, partial R2 = 0.13), and w (l = 0.34, R2 = 0.07). The
partial R2 values indicate that S is by far the most significant
single explanatory variable. The simplified discriminant
function with three variables produced an error rate of
24%, which compares very favorably with the error rate
obtained using the discriminant function with eight varia-
bles. Seventy percent of plane-bed reaches were correctly
classified (16% incorrectly classified as pool-riffle, 14%
incorrectly classified as step-pool). Sixty-seven percent of
pool-riffle channels were correctly classified (31% incor-
rectly classified as plane-bed, 2% as step-pool). Eighty-nine
percent of step-pool reaches were correctly classified (9%
incorrectly classified as plane-bed, 2% as pool-riffle).
[27] 2. Table 2a summarizes the results of applying the

three-variable discriminant function to regional data subsets
(test 2). The overall error rate using this approach was good
(�21%) for three of the four regional subsets tested. The
fourth subset, Panama, had a 46% overall error rate, largely
as a result of pool-riffle channels misclassified as plane-bed
reaches.
[28] 3. Table 2b lists the results of applying discriminant

functions developed from three subsets of regional data
against another regional subset (test 3). Of the four discrim-
inant functions developed using this approach, only two
included the variable of S, which was by far the most
significant variable in the discriminant function developed
for the entire data set. Three of the four subset discriminant
functions included R/D84, which did not appear in the
discriminant function based on the entire data set. Three
of the four subset discriminant functions had acceptable
overall error rates (<33%), whereas one function had an
overall error rate of 60%, largely because this function
misclassified all of the step-pool reaches in the test subset.
[29] 4. Table 2c summarizes the results for discriminant

functions developed from individual regional subsets of
data (test 4). The Montana linear discriminant function
included four variables and had a very low error rate (2%)
when tested against Montana data. The model was statisti-
cally significant (l = 0.16, p < 0.0001, df = 4/84). The error
rates remained fairly low when the function was tested
against the Washington (12%), New Zealand (12%), and
entire (19%) data sets, but was high (41%) when tested
against the Panama data set. The Panama linear discriminant
function, although having a higher error rate (19%) when
tested against the Panama data, was also significant (l =
0.43, p < 0.0001, df = 1/38) and contained only one
variable. The error rates varied from fairly high when tested
against the Montana (50%) data set, to reasonable against
Washington (28%), New Zealand (12%), and the entire
(36%) data set. The Washington linear discriminant function
was significant (l = 0.04, p < 0.0001, df = 10/86) and
included five variables. This function had a 16% error rate
for Washington data, but the error rate rose to 48% for the
New Zealand data, 62% for the entire data set, and 100% for
the Montana and Panama data.

Figure 1. (a) Gradient by channel type. (b) Gradient by
region for step-pool channels. (c) Gradient by region for
pool-riffle channels. Abbreviations for regions are as in
Table 1. The line within each box indicates the median
value, box ends are the 25th and 75th percentiles, whiskers
are the 10th and 90th percentiles, and solid dots are outliers.
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[30] It is important to note that several of the variables
used in all of the discriminant analyses were highly corre-
lated. If two variables are highly correlated, the first one
entered into the discriminant function may prevent the other
from being included even though it would have contributed
to the model in a similar way. For example, whereas only
w was included in the Panama discriminant function, width
is correlated with A (r = 0.73, p < 0.001), Q (r = 0.88, p <
0.001), S (r = �0.63, p < 0.001), d (r = 0.58, p < 0.001), L
(r = 0.70, p < 0.001), f (r = �0.55, p < 0.001), and W (r =
0.72, p < 0.001). Therefore w in the Panama discriminant
function represents these other variables and the discrimi-
nant function should be interpreted as such. A complete
correlation matrix is provided in Table 3.
[31] 5. Of the 159 reaches (62 plane-bed, 41 pool-riffle,

and 56 step-pool) in the validation data set, 69% of reaches
were correctly classified by the discriminant function
developed from the original data set. Twenty-six percent
of plane-bed reaches in the validation data set were classi-
fied as step-pool and 18% were incorrectly classified as
pool-riffle. Thirty-nine percent of pool-riffle reaches were
misclassified as plane-bed and 7% as step-pool. Step pool
channels had the lowest classification error rate, with only
7% misclassified as plane-bed and 2% as pool-riffle.

5. Discussion

[32] Comparison of the eight discriminant functions
developed using different data sets indicates that no single
variable is present in all discriminant functions. This sug-
gests that the discriminant functions are sensitive to the
specific stream reaches being analyzed. In several cases, the
subsets used for analyses did not include all three channel
types that are present in the entire data set. The Panama
subset, for example, has only pool-riffle and step-pool
reaches, whereas the New Zealand subset has only step-
pool and plane-bed reaches. However, discriminant func-
tions developed from a data subset with only two channel
types do not have consistently higher overall error rates
when applied to the entire data set than functions developed
from subsets with all channel types (Table 2c). No single
channel type is consistently misclassified at a higher rate
than the other types. Of course, discriminant functions
developed from a data subset having only two channel
types can only classify new data into one of the two reach
types for which the function was created. As might be
expected, the discriminant function developed using the
entire data set generally has the lowest overall error rate
when applied to individual data subsets.

Figure 2. Canonical discriminant analysis (CDA) of
channel type classified by reach gradient, D84, and channel
width. Plot of first two axes from CDA with contours
constructed from (a) D84, at an interval of 40 mm, (b) reach
gradient, at an interval of 0.004 m/m, and (c) channel width,
at an interval of 2.5 m. Contour plots were constructed
using the inverse distance weighting method. Canonical
loadings (weights) of the three variables D84, reach gradient,
and channel width are 0.53, 0.94, and �0.58 on canonical
axis 1, respectively. Canonical loadings of D84, reach
gradient, and channel width are 0.79, �0.32, and 0.49 on
canonical axis 2, respectively.
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[33] Slope and R/D84 are present in half of the eight
discriminant functions. Functions that include S as one of
the variables tend to have lower error rates when applied to
the entire data set or to another data subset (Tables 2a–2c).
Slope in this data set can be regarded as an independent
variable imposed on the channel at the reach scale. None of
the reaches included in these data sets were sinuous, and
most of the drainage basins from which data were drawn
had abrupt downstream changes in slope associated with
glacial history, lithology, or structure. Given the importance
of slope in the discriminant analyses, comparison of slope
ranges for each channel type between the different data
subsets helps to explain some of the classification errors.
Although the mean gradient of each channel type is signif-
icantly different when combining all channels of each type
for the entire data set (Figure 1a), there are significant
differences between the mean gradient of step-pool reaches
(Figure 1b) or pool-riffle reaches (Figure 1c) from different
regions.
[34] Interregional differences could reflect differences in

(1) site selection criteria (e.g., targeted stream size) and/or
differences in methods of collecting field data among the
regional data sets, (2) flow regime (differences in magni-
tude, frequency, and duration of flows capable of mobilizing
the streambed may create systematic differences among
step-pool channels in Panama and Arizona, for example,
although this has not been examined), or (3) wood loading.
Wood loading was sparse in most of the regional data sets
(e.g., Arizona, New Mexico, Panama, New Zealand), but
some of the channels in Washington and Montana, in
particular, included abundant wood that could be forcing
specific channel morphologies at a lower gradient than they
would otherwise be present [Montgomery et al., 1995].
[35] Plotted results from the canonical discriminant anal-

ysis indicate consistent trends with respect to channel type.
Step-pool channels tend to have the largest values of D84

(Figure 2a) and S (Figure 2b), and the lowest values of
w (Figure 2c). Pool-riffle channels have the smallest D84

and S values, and the greatest w, and plane-bed channels are
intermediate between the other two channel types.
[36] We initially hypothesized that some measure of

hydraulic driving force would be included in the final
discriminant function. The absence of such a variable could
reflect the fact that the bank-full hydraulic variables used in
this analysis are largely estimated, rather than directly
measured. Because the roughness coefficient is very diffi-
cult to estimate in steep, coarse-grained streams [Jarrett,
1984, 1990; Wohl, 2000], there is probably at least twenty
percent uncertainty in the estimates of hydraulic variables,
which contrasts with the higher accuracy of other variables,
such as those included in the discriminant function. Alter-
natively, the lack of hydraulic variables in the final discrim-
inant function could reflect the fact that hydraulic variables
are truly not as effective in discriminating among the three
channel types that we analyzed. Resolution of this question
requires collection of bankfull hydraulic data for mountain
streams.
[37] The ability to accurately classify channel type in

other regions using the three-variable discriminant function
developed from the entire data set has important implica-
tions for water resources management. Slope, the single
most dominant variable, can be mapped using topographic

map or high-resolution digital elevation model (DEM)
coverage of a basin, although it is difficult to accurately
estimate the slope of shorter channel reaches (<approxi-
mately 500 m long). Grain size distribution is likely to
correlate strongly with slope within a region, and channel
width is likely to correlate strongly with discharge or
drainage area [Wohl et al., 2004], allowing calibration of
regional S-w-D84 relations with minimal field work. Predic-
tion of channel type distribution has the potential to facil-
itate numerous resource management decisions. Spawning
Atlantic salmon, for example, preferentially use pool-riffle
and transitional pool-riffle/plane-bed reaches, and avoid
plane-bed and step-pool reaches [Moir et al., 2004]. Accu-
rate maps of channel type within a drainage basin using GIS
base coverage of channel-reach slope could thus serve as
surrogate habitat availability maps where the relations
between reach-scale geomorphic features and gradient are
well established. The structure and composition of riparian
vegetation are also highly related to fluvial features and
reach-scale channel morphology [Harris, 1988; Hupp and
Simon, 1991; Bendix and Hupp, 2000]. Studies of channel
response to flow diversion in the southern Rocky Mountains
indicate that pool-riffle channels are more likely than step-
pool channels to have altered width/depth ratios as a result
of flow diversion [Ryan, 1994]. Maps of channel sensitivity
to land use such as flow diversion or timber harvest could
thus be developed from maps of channel type based on
distribution of reach-scale channel slope.
[38] The methods presented here for testing the ability of

specific variables to predict channel morphology might also
be applicable to other types of independent variables that
can be extracted from DEMs of a basin. Discriminant
functions constructed of variables such as valley attributes
(e.g., width, side slope angle, tributary inputs to a main
channel, and valley slope) could be used within a GIS
platform to classify pertinent aspects of reach-scale channel
morphology for a particular region. Not only could reach-
scale channel morphology be classified from such a simple
analysis, but confidence bounds could be placed upon such
classifications, and functions could be refined a posteriori
with information obtained during field verification.
[39] In this analysis, the inclusion of data from a broad

range of climatic and tectonic regimes suggests that the
discriminant function developed here for distinguishing
step-pool, plane-bed, and pool-riffle channel types may be
more broadly applicable to mountain streams in other parts
of the world.
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