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Abstract
Sediment quantity and quality are key considerations in the sustainable management of fluvial systems.
Increasing attention is being paid to the role of aquatic biota as geomorphic agents, capable of altering the
composition, mobilization and transport of fluvial sediments at various spatiotemporal scales. In this paper
invasive species are presented as a special case since: (1) populations may not be constrained by factors
characteristic of their native habitats; and (2) they represent a disturbance to which the system may not be
resilient. Discussion is centred on the signal crayfish which has rapidly colonized catchments in Europe
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and Japan, but the hypotheses and models presented provide a framework applicable to other invasive
species. This paper explores the mechanisms by which signal crayfish may influence sediment dynamics
from the patch scale to the catchment scale. There is potential for signal crayfish to impact significantly on
river sediments and morphology as a function of their interactions with river bed and bank material, and
with other aquatic organisms, combined with their large body size and aggressive nature, their presence
in very high densities, and the lack of effective mitigation strategies. Potential catchment-scale management
issues arising from these factors include habitat degradation, mobilization of sediment-associated nutrients
and contaminants, and sediment-related flood risks. Further interdisciplinary research is required at the
interface between freshwater ecology, fluvial geomorphology and hydraulics, in order to quantify the signifi-
cance and extent of these impacts. The paper points to the key research agendas that may now emerge.
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I Introduction

Increasing attention has been paid in recent years

to the sustainable management of catchment sedi-

ment systems, including the quality as well as the

quantity of sediment stored and transferred

(Owens, 2008). In particular, it is increasingly

acknowledged that changes to sediment delivery

and dynamics can represent a significant manage-

ment problem (Owens et al., 2005; Thorne et al.,

2010; Walling and Collins, 2008). For instance,

increased suspended sediment loads can affect

water temperature and light penetration through

the water column (Bilotta et al., 2007; Owens

et al., 2005), clog aquatic vegetation (Wood and

Armitage, 1997, 1999), affect the health and

reproductive capabilities of fish and invertebrates

(Newcombe and MacDonald, 1991; Petticrew

and Rex, 2006), and play an important role as car-

riers in the transfer of nutrients (e.g. phosphorus)

and contaminants (e.g. pathogens, metals, radio-

nuclides, pesticides) that can reduce water quality

(Förstner, 1987; Heathwaite and Dils, 2000;

Heathwaite et al., 2005; Kretzschmar et al.,

1999; Kronvang, 1990). Furthermore, elevated

rates of sediment delivery to sensitive reaches can

reduce the conveyance capacity of river channels

through aggradation, thus increasing flood risk

and restricting navigation (Lane et al., 2007;

Stover and Montgomery, 2001; Verstraeten and

Poesen, 2000) as well as posing a risk to public
water supply (Butcher et al., 1993), and smother-
ing aquatic habitats such as gravel beds that are
used by fish for spawning (Newcombe and Jen-
son, 1996; Ryan, 1991; Soulsby et al., 2001).

While the importance of sediment dynamics
and sediment management has received increas-
ing recognition, the complexity of the catchment
sediment system continues to present difficulties
for the accurate representation of key processes
(Trimble, 1983; Walling, 1983). Furthermore,
future management of catchment sediment
dynamics must address a combination of
climate-induced changes in sediment delivery
(Evans et al., 2004a, 2004b; Lane and Thorne,
2007) and, in Europe, an evolving legislative
framework which requires the reconciliation
of flood risk management goals with improve-
ments to the ecological status of water bodies
(e.g. European Parliament and the Council of the
European Union, 2000, 2007). Further research
is therefore required across a range of scales from
the sediment patch to whole-system modelling
(Naden, 2010), with emphasis placed on the
reciprocal interactions between the biotic and
abiotic components of the fluvial environment
(Corenblit et al., 2007, 2008; Moore, 2006).

A key current research focus is the concept

of aquatic organisms as ‘geomorphic agents’

or ‘ecosystem engineers’ capable of modify-

ing the surrounding physical environment
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and the availability of resources for other organ-

isms (Corenblit et al., 2007; Newton, 2010;

Statzner et al., 2003). This builds on a long

history of interest in the interactions between

organisms and geomorphological processes

(e.g. Darwin, 1881), underpinned by newer fra-

meworks including ecosystem engineering

(Jones et al., 1994), biogeomorphology (Viles,

1988) and zoogeomorphology, which focuses

specifically on the impact of animals on geo-

morphic processes (Butler, 1995). For instance,

both living and dead aquatic and riparian

vegetation has been shown to be an important

control on river hydraulics, morphology and

habitats from local-scale modification of velo-

city patterns and sediment deposition (Gurnell

et al., 2006) to larger-scale influences on the

structure and connectivity of landform elements

such as depositional barforms and floodplain sur-

faces (Bertoldi et al., 2009). A vast literature

describes the influence of a range of lotic organ-

isms, including bacteria, algae, aquatic inverte-

brates, fish and mammals, on the composition,

mobilization and transport of fluvial sediments

through feeding, movement, habitat construction

and interactions with other aquatic biota. Such

influences include organic matter processing and

biodeposition of faeces (Vaughn and

Hakenkamp, 2001; Wharton et al., 2006);

removal of sediments from benthic substrata

(Flecker, 1996; Pringle et al., 1993; Zanetell and

Peckarsky, 1996); reworking of sediments at the

water-sediment interface through bioturbation

(Mermillod-Blondin and Rosenberg, 2006;

Nogoro et al., 2006); alterations to bed topogra-

phy, fabric arrangement, and entrainment thresh-

olds (Field-Dodgson, 1987; Gottesfeld et al.,

2008; Johnson et al., 2009, 2010; Statzner et al.,

2003); bank erosion (Holdich et al., 1999; Meen-

temeyer et al., 1998); and alterations to hydraulics

and sediment transport associated with habitat

construction (Gurnell, 1998). Influences may also

be indirect, or joint, associated with biotic inter-

actions among aquatic organisms (Beschta and

Ripple, 2006, 2008; Naiman et al., 2000; Statzner

and Sagnes, 2008). Perhaps the best studied

example of animals effecting riverine processes

are salmonid fish that modify substrate character-

istics when spawning by constructing redds

resulting in the loosening of the bed, the winnow-

ing of fine sediment and alterations to surface

topography and near-bed hydraulics (Hassan

et al., 2008; Montgomery et al., 1996). Rice

et al. (forthcoming) review the impact of

salmonids, other fish and invertebrates on coarse

bed material engineering and its implications for

gravel transport in rivers.

In considering the influence of aquatic

organisms as geomorphic agents, invasive

species may represent a special case, since they

have often been released from the suite of factors

that would limit their vigour and abundance in

their native habitats (Wolff, 2002) and, hence,

may be present in very high densities. Further-

more, the presence of an invasive species repre-

sents a disturbance to the natural functioning of

the system to which they have been translocated,

with the implication that there may be reduced

system resilience to their impacts (Vitousek,

1990). Examples of invasive species that have

also been identified as having the potential to

alter freshwater environments include zebra

mussels (Dreissena polymorpha) and some other

crayfish species (i.e. Orconectes sp.) which have

been introduced to Europe, and species of salmon

(Salmo sp.) introduced to New Zealand. This

paper hypothesizes that, as a consequence of

these extraordinary characteristics, invasive spe-

cies can have a disproportionately large influence

on fluvial sediment dynamics and may, therefore,

lead to a series of sediment-related management

issues in impacted river systems. This is one

arena, of many in river science, where there is

substantial potential for fruitful interdisciplinary

progress at the interface of geomorphology,

ecology and hydrology (Palmer and Bernhardt,

2006; Rice et al., 2010; Vaughan et al., 2009).

The following discussion is centred

around the potential impacts of signal crayfish

(Pacifastacus leniusculus, Dana) on fluvial
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sediment dynamics, with emphasis on the supply

and routing of fine, suspendable materials,

outlining the ways in which their impact as a

geomorphic agent at local scales within river

systems may create sediment-related manage-

ment problems at the catchment scale. The paper

does not consider coarse sediment, surface engi-

neering by organisms except as a potential

mechanism that affects the availability of fine

sediments stored within the subsurface matrix.

While the discussion relates primarily to the

regions in which the signal crayfish represents

an invasive species and a potentially significant

management problem at present, the hypotheses

and models provide a framework which may be

transferable to the consideration of altered

sediment dynamics and sediment-related man-

agement problems associated with other invasive

species.

II The signal crayfish

Signal crayfish exhibit several physical and

behavioural characteristics which are of signifi-

cance when examining impacts on the physical

environment: an ability to persist in a range of

river types; an ability to travel large distances

and rapidly colonize river catchments; the

potential for severe impacts on other aquatic

organisms; and their large body size and aggres-

sive nature. This section, therefore, describes the

spread of the signal crayfish as an invasive

species and identifies some of the biological

characteristics that enhance its potential as a

driver of sediment-related management problems

in river catchments.

The signal crayfish is endemic to western

North America, but has been introduced into

Japan and over 20 countries in Europe since the

1960s (Lewis, 2002; Light, 2003). Signal

crayfish were introduced to Britain in 1976 and

had colonized more than 250 British waters by

1988 (Lowery and Holdich, 1988). They

frequently carry crayfish plague (Aphanomyces

astaci), a fungal infection to which they are

highly resistant (Alderman et al., 1990) but

which is lethal for many native European spe-

cies, such as the British white-clawed crayfish

(Austropotamobius pallipes). The British

population of white-clawed crayfish has been

devastated by the arrival of signal crayfish,

mainly due to the effects of crayfish plague

(Holdich and Rogers, 1997; Lozan, 2000). In the

absence of crayfish plague, the displacement of

white-clawed crayfish takes place over several

years (Bubb et al., 2005), probably via aggres-

sive interspecific competition for in-stream

refuges from predation, such as large cobbles

and boulders (Bubb et al., 2006). No measure for

the effective control of signal crayfish has yet

been discovered (Peay, 2001) and signal cray-

fish can be present in extremely high densities:

measurements in US and British habitats

range from 0.9 to 20 individuals per square

metre (Abrahamsson and Goldman, 1970; Bubb

et al., 2004; Goldman and Rundquist, 1977) and,

where present, they typically dominate the

invertebrate biomass (Momot, 1995). Invasive

crayfish have great potential to disrupt the fresh-

water ecosystems into which they are translo-

cated, by negatively affecting both freshwater

biological communities (Gherardi et al., 2001)

and the physical environment (Horwitz, 1990).

Most crayfish species, including signal cray-

fish, are highly mobile and capable of substantial

active movements against flowing water (Bubb

et al., 2004). In a radio-tracking study of signal

crayfish on the UK River Wharfe, Bubb et al.

(2004) found that crayfish would usually remain

in the same location for days to weeks, followed

by movement to a new location associated with a

refuge. In that study, the median distance moved

(per two days) in an upstream direction

was 7.5 m and 7.0 m in a downstream

direction (range 0–790 m). In the River Bain,

Lincolnshire, radio-tagged signal crayfish were

found to remain in a 20 m reach for an average

of 11 days, after which they made a long

distance movement out of the reach (Johnson,

2010). Within this short river reach, crayfish were
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highly active, and particularly concentrated along

the inner bank of a meander bend where flow

velocities were low and macrophyte stands

provided cover. Crayfish did not remain in open

areas of the channel for extended periods but did

make regular nocturnal movements across the

channel between banks (Johnson, 2010). Most

species of crayfish are nocturnal (Gherardi

et al., 2001; Hill and Lodge, 1994; Lozan,

2000), spending daylight hours in refuges from

predation such as in burrows or beneath cobbles

(Hill and Lodge, 1994). Signal crayfish feed

mainly between dusk and dawn (Flint, 1977;

Guan and Wiles, 1998), with the length of activity

periods directly related to the duration of dark-

ness over 24 hours (Flint, 1977). Styrishave

et al. (2007) established that heart rate, locomotor

activity and oxygen consumption of signal

crayfish increased at night but remained

relatively high during daylight hours, compared

to those of a more strictly nocturnal species,

Astacus astacus. Similarly Lozan (2000) demon-

strated that the mean length of activity for signal

crayfish per 12-hour period was 187 minutes

(+12 minutes) during the night and 98 minutes

(+8 minutes) during the day, indicating that the

movements of signal crayfish are primarily,

but not exclusively, nocturnal, whereas other

species (e.g. A. astacus) are exclusively noctur-

nal. Crayfish activity is highly affected by water

temperature: Lozan (2000) showed that the

activity of four species of crayfish (including

signal crayfish; measured in minutes per day),

was highest at 20�C. At 4�C, while all four

species were still active, their activity levels

were up to 80% lower than at the peak. This is

corroborated by signal crayfish activity in the

River Bain, which was found to be highest in

summer months (temperature 12–18�C) and

steadily declined with water temperature and

increasing flow stage (Johnson, 2010). Therefore,

seasonality in temperate habitats will affect

crayfish activity through a combination of affect-

ing night length and water temperature, although

the effects of temperature are likely to be more

profound than those of day length on signal

crayfish.

III Impacts of the signal crayfish
on sediment dynamics

Research to date on the impacts of signal

crayfish on sediment dynamics has primarily

been developed on experimental streams (e.g.

Parkyn et al., 1997; Statzner et al., 2000, 2003)

and for gravel-bed streams, often in upland

environments (e.g. Creed and Reed, 2004).

In contrast, there is a dearth of studies within

lowland, low-energy systems, despite a potential

for significant impacts on sediment dynamics in

intermediate-zone reaches where sediments are

fine-grained and, hence, potentially more readily

mobilized and transported, and where agricul-

tural and industrial contaminants may be bound

to sediment particles. Nevertheless, a substantial

body of literature suggests that crayfish activi-

ties can have negative impacts on the physical

environment of river systems (Horwitz, 1990)

and hence have the potential to influence

sediment dynamics throughout catchments.

This evidence base has been used to develop a

conceptual model of the impacts of signal cray-

fish on fluvial sediment dynamics from the

micro scale to the catchment scale (Figure 1).

The following two sections, supported by

Figure 1, examine the two main ways in which

signal crayfish may modify sediment dynamics

at local scales in river systems: (1) via feeding

activities; and (2) via non-feeding activities such

as burrowing, walking or fighting.

1 Feeding activities

Crayfish are benthic omnivorous and detritivorous

feeders, feeding on a variety of items including

amphibian eggs and larvae (Axelsson et al.,

1997; Gamradt and Kats, 1996), macroinverte-

brates (Guan and Wiles, 1998; Hanson et al.,

1990; McCarthy et al., 2006), algae (Creed,

1994; Hanson et al., 1990), macrophytes
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(Lodge et al., 1994; Nyström and Strand, 1996),

fish and their eggs and larvae (Guan and Wiles,

1998, 1999) and dead leaves (Usio, 2000). High

densities of invasive crayfish may, therefore,

lead to severe negative impacts on a range of

native flora and fauna (Holdich et al., 1999).

Fish species may be affected by direct preda-

tion (as above), but also through competition

for food and shelter (especially benthic fish

such as bullhead, Cottis gobio and stone loach,

Noemacheilus barbatulus; Guan and Wiles,

1997) and by destroying breeding sites through,

for example, macrophyte reduction (Guan and

Wiles, 1998). High crayfish densities also

typically cause a shift in macroinvertebrate

composition towards relatively fast-moving

and sediment-burrowing taxa (Crawford et al.,

2006; Hanson et al., 1990; Lodge et al., 1994).

Stream invertebrates play a key role in the

breakdown of leaf material in streams (Webster

and Benfield, 1982) and, in both laboratory

studies and stream manipulations, shredding

invertebrates have been shown to increase the

conversion of coarse particulate organic matter

(CPOM, particles typically >1 mm in diameter;

Wallace and Webster, 1996) to fine particulate

organic matter (FPOM, particles typically

0.45 mm to 1 mm in diameter; Cuffney et al.,

1990) and dissolved organic matter (see review

in Wallace and Webster, 1996). Through their

feeding activities, crayfish directly and indir-

ectly influence rates of CPOM conversion

(Momot, 1995; Parkyn et al., 1997; Schofield

et al., 2001; Usio et al., 2006). Their direct role

in breaking down CPOM can be substantial: in

a headwater stream in New Zealand, Usio and

Townsend (2004) found that crayfish dominated

the shredder functional feeding group, compris-

ing an average of 99% of the total biomass of

shredder invertebrates. Crayfish also have indirect

Figure 1. Conceptual model of the impacts of crayfish on the physical structure of river systems from the
micro scale to the catchment scale. See text for detailed explanation of linkages.
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effects on FPOM production through their

various functional ecosystem roles (Creed,

1994; Feminella and Resh, 1989; Weber and

Lodge, 1990; Usio and Townsend, 2004), not

least their potential influence on the abundance

of other organisms and especially macroinverte-

brate shredders (Usio, 2000). Crayfish impacts

on CPOM:FPOM ratios are not, therefore,

straightforward but, by affecting organic particle

size distributions, crayfish are expected to influ-

ence organic particulate resuspension rates, down-

stream transport of FPOM and the fine organic

component of the bed sediment composition.

An additional indirect impact on the instream

environment associated with feeding activities is

the destruction of aquatic macrophytes, which

also are a food source for signal crayfish (Flint

and Goldman, 1975; Guan and Wiles, 1998).

Flint and Goldman (1975), working on signal

crayfish, demonstrated that the standing crop

of Myriophyllum sp. increased in experimental

cages containing no, or low, crayfish biomass

(0.17 g m-1), but decreased in response to

crayfish biomasses of greater than 69 g m-1 to

a maximum decrease of 1.9 g m-1 per day in high

crayfish biomass treatments (200 g m-1).

Similarly, Chambers et al. (1990), working on

the crayfish Orconectes virilis, demonstrated

that crayfish biomasses of 5–10 g m-1 decreased

biomass of three species of aquatic macrophyte

by approximately 50%. Aquatic macrophytes

are a key roughness element in lowland rivers

(Haslam, 1978; Petryk and Bosmajian, 1975)

and have been shown to influence flow velocity

behaviour at both the reach and channel cross-

section scales, localized patterns of fine sediment

deposition, bank erosion and aggradation

(Cotton et al., 2006; Gregg and Rose, 1982;

Gurnell et al., 2006; Naden et al., 2006; Wharton

et al., 2006). Thus, signal crayfish feeding activ-

ities have the potential to alter local bed material

composition and hydraulics by directly modify-

ing CPOM conversion rates, and through impacts

on invertebrate and macrophyte communities

(Figure 1).

2 Non-feeding activities

Crayfish directly modify river bed and bank
sediments through non-feeding activities such
as movement and fighting (Parkyn et al., 1997;
Statzner et al., 2003; Usio and Townsend,
2004) and by burrowing into the banks (Holdich
et al., 1999; Lewis, 2002; Figure 1) and river bed
(see below). Signal crayfish dig extensive
burrows into soft river banks (up to 10–20 m-2;
Figure 2). Bank burrows have been observed to
accelerate bank erosion (Guan, 1994; Holdich
et al., 1999) and increase the delivery of fine,
suspendable sediments to streams (Angeler
et al., 2001). While studies seeking causal rela-
tionships between crayfish burrowing and bank
erosion are few, it can be hypothesized that
burrowing activity may contribute to bank
erosion in a number of ways. Localized erosion
may be associated with the action of tunnelling
into the bank and displacing sediment from
burrow entrances. Dense networks of burrows
may increase the susceptibility of banks to ero-
sion by other agents (fluvial and subaerial) as a
result of increasing the area of the bank surface
that is subject to erosive forces. Burrowing is
also likely to increase the probability of bank
collapse via mass failure processes. The exact
mechanism of failure is likely to be influenced
by the variability of burrow density in the verti-
cal dimension; burrow geometry; and the prop-
erties of the bank itself, including sediment
calibre and composition, bank angle and riparian
vegetation cover (Lawler et al., 1997).

A widely reported impact of mobile crayfish
on bed sediment composition is the winnowing,
from the substrate, of fine inorganic sediment
(Creed and Reed, 2004; Helms and Creed,
2005; Matsuzaki et al., 2009; Parkyn et al.,
1997; Usio and Townsend, 2004). Statzner
et al. (2000, 2003), working in small artificial
channels (0.2 m wide, 1.25 m2 total area), found
that more sediment was eroded from an unstruc-
tured, sand-gravel substrate when the crayfish
Orconectes limosus was present, than from con-
trol substrates without crayfish. The critical
shear stress for sand-sized particles was reduced
by 50–75% in the presence of the animals. In the

Harvey et al. 523



North River, North Carolina, USA, Fortino
(2006) noted that crayfish-related winnowing
of fine sediment was not observed in winter due
to a decline of crayfish activity in cold tempera-
tures. Mobilization of fine inorganic sediment is
associated with the movement of legs and con-
tact between the substrate and abdomens of
walking crayfish (Usio and Townsend, 2004).
Statzner et al. (2000) also suggest that increased
mobility of fine sediments may reflect grazing
by crayfish of algal cover that might otherwise
stabilize fine sediments. The impact of abiotic
and biotic variables on substrate reworking by
crayfish has also been explored (Statzner and
Peltret, 2006; Statzner and Sagnes, 2008). They
found that the presence of fish (gudgeon, Gobio
gobio) and crayfish, both of which have been
shown to rework substrates in isolation, did not
have an additive effect on substrate disturbance

when combined, indicating the potentially
complex effects of communities of organisms
on sediment reworking.

Statzner et al. (2003) also reported that the
presence of the crayfish (O. limnosus) altered the
topography of the gravel-sand substrates in their
small experimental channels. A measured
increase in mean bed elevation was interpreted
as indicating that gravel consolidation was
reduced by crayfish (Statzner et al., 2003). In a
series of experiments, Johnson et al. (2010)
found that signal crayfish can move gravels up
to 38 mm in diameter, with a submerged weight
on average six times greater than that of the cray-
fish used in the experiments. Importantly, signal
crayfish altered the grain-to-grain geometry of
substrates by brushing past grains when moving
around. Analysis of laser-scanned digital eleva-
tion models revealed that crayfish movements

Figure 2. Crayfish burrows in the banks of the River Windrush, Oxfordshire, UK
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disturbed imbricate grain structures that form
naturally under low-intensity flows in gravel-bed
rivers and which are associated with imparting
significant stability to coarse, water-worked sub-
strates (Johnson, 2010). Crayfish also constructed
pits and mounds across gravel surfaces that
resulted in substantial changes to grain protrusion
(Johnson et al., 2010) and near-bed hydraulics.
These impacts, coupled with the grain-scale struc-
tural changes, were found to reduce significantly
the stability of gravel substrates when exposed
to high flows: almost double the number of gravel
grains were entrained from crayfish-disturbed
surfaces than from water-worked control sur-
faces, unaffected by crayfish (Johnson, 2010).

In addition to their impacts on the composition,

structural arrangement and mobility thresholds of

river bed materials, crayfish also appear to affect

the availability and mobilization of suspended

sediments. Figure 3 summarizes the ways in

which crayfish disturbance to the bed material

and banks, through different activities (such

as movement on the river bed and bank burrow-

ing), may influence fine sediment dynamics

from the patch to the reach scale. It is possible

that crayfish directly accomplish the suspension

of sediments when walking or back-swimming

across patches of surface fines. Furthermore,

topographic or textural alterations made by cray-

fish to the bed are likely to alter local near-bed

hydraulics pertinent to sediment suspension and

may, therefore, indirectly affect the mobility of

fine surficial material. In addition to affecting

fine sediment mobilization, crayfish may also

increase the availability of fine inorganic sedi-

ment: their interaction with coarser surface grains

that hide or protect finer sediments may alter the

supply of fines to the surface and their exposure to

incident turbulent stresses; and, by reducing the

Figure 3. Key processes associated with bed and bank sediment disturbance by signal crayfish, and potential
implications for reach-scale morphology and fine sediment dynamics. Dotted lines signify the potential for
impacts beyond the reach scale.
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stability of coarse-grained surface layers, crayfish

may encourage surface layer breakup, thereby

increasing the availability of fines from the sub-

surface sediment mixture. Preliminary research

conducted on a lowland, low-energy UK river

dominated by fine substrates complements these

hypotheses: nocturnal increases in crayfish activ-

ity were reflected by an increase in the frequency

of intermittent high-magnitude sediment suspen-

sion (turbidity) events, which have a cumulative

impact on ‘ambient’ turbidity levels within a

reach colonized by signal crayfish (Harvey

et al., forthcoming). In addition, bank burrowing

activity may cause increases in fine sediment

supply associated with creation, maintenance

and occupation of burrows, and, over time,

further impacts may be associated with the desta-

bilization and subsequent failure of river banks

following exceedance of a burrow network den-

sity threshold, leading to changes in channel mor-

phology and fine sediment inputs.

IV Up-scaling the impacts of
signal crayfish on sediment
dynamics: A call for research

The foregoing discussion suggests that there is

great potential for the signal crayfish to impact

significantly on sediments and morphology at

the patch scale of river systems, as a function

of a combination of factors: (1) their interaction

with bed material, river banks and other aquatic

organisms; (2) their large body size and aggres-

sive nature; and (3) the potential for invasive sig-

nal crayfish to be present in very high densities.

However, given that short timescale and small

spatial-scale processes are known to be capable

of influencing system behaviour over longer

timescales and larger space-scales (Lane and

Richards, 1997), it is also highly plausible that

signal crayfish impacts could extend beyond the

scale of the immediate surroundings of the habi-

tat patch within which individuals interact at a

particular point in time/space (cf. Sousa et al.,

2009). As indicated in Figure 1, key knowledge

gaps remain regarding the ways in which signal

crayfish activities at patch scales may cumula-

tively influence sediment dynamics at reach to

catchment scales and, thus, instigate or enhance

sediment-related river management problems.

However, there are strong physically based

arguments that support this hypothesis and these

are outlined in the following section.

Changes in the character and composition of

sediment in river channels resulting from signal

crayfish activities can increase the availability

of sediment for entrainment and transport, and

reduce the stability of this sediment over broad

areas (Johnson et al., 2010; Sousa et al., 2009;

Statzner et al., 2003). Thus, in addition to the

direct bioturbation that occurs when they move,

signal crayfish are likely to increase the amount

of sediment mobilized during competent trans-

port events. Signal crayfish are also likely to

enhance the potential for this material to be

transported over greater distances than would

otherwise occur by increasing the degree of con-

nectivity between reaches (cf. Fryirs et al., 2007;

Hooke, 2003). The destruction of aquatic macro-

phytes, alterations to bed microtopography and

changes in channel morphology are all likely

to modify reach-scale hydraulics (cf. Ashworth

and Ferguson, 1986; Clifford et al., 1992a,

1992b; Gurnell et al., 2006; Lane and Richards,

1997; Naden et al., 2006; Simon and Senturk,

1992), thereby potentially reducing opportuni-

ties for sediment retention and enhancing

throughput to areas further downstream. In com-

bination, these effects have the potential to

destabilize sediment dynamics across large sec-

tions of river networks and even in downstream

areas where signal crayfish are absent.

Possible catchment-scale management issues

that may result include the adequate provision of

physical habitats that are suitable for native

aquatic organisms, and hence the ability to meet

legislative demands for hydromorphological and

ecological quality (e.g. European Parliament and

the Council of the European Union, 2000); the

potential for upstream impacts on sediments and
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morphology to undermine river rehabilitation

and improvement works further downstream

(Brierley and Fryirs, 2005); and increased levels

of flood risk resulting from both morphological

changes that modify conveyance capacity and

the potential for crayfish to undermine certain

types of flood defence works (e.g. earth embank-

ments). Widespread increases in ambient water

turbidity levels would pose a threat to aquatic

biota (Soulsby et al., 2001) and, in catchments

affected by intensive agricultural or mining

activity, changes in sediment stability and

connectivity may facilitate the mobilization and

transfer of nutrients and contaminated sediments,

with further implications for water and sediment

quality (Cappuyns et al., 2006; Dennis et al.,

2003; Macklin et al., 2006).

Further research is urgently required to

quantify the magnitude of these impacts and

improve our understanding of how local-scale

signal crayfish impacts are propagated beyond

their immediate vicinity. Temporal variation in

crayfish activity may be an important factor

since, for example, increased activity during

summer months may elevate the significance

of sediment-related river management problems

that result from high-magnitude hydrological

events. Significantly though, the spatial distribu-

tion of the potential impacts identified is likely

to be determined principally by the sensitivity

of a particular habitat patch, reach or catchment

to impacts, rather than preferential habitat use by

signal crayfish: the rapid spread of signal cray-

fish throughout the UK and Europe illustrates

their ability to occupy a range of habitat types.

The most sensitive locations may, therefore, be

found within lowland reaches or the ‘intermedi-

ate zones’ of river systems, which are character-

ized by fine bed material and, potentially,

associated with greater levels of anthropogenic

floodplain disturbance (e.g. contamination from

industrial and agricultural activity). Efforts

should therefore be directed towards the identifi-

cation of metrics capable of describing sensitiv-

ity to crayfish impacts. Research should also be

conducted within the context of anticipated

future changes in climate and land use which

may have the potential to exacerbate current

impacts. This is likely to include a combination

of direct impacts on population dynamics and

activity levels associated with projected future

changes in climate (specifically temperature,

see above) together with broader changes in

spatial patterns and rates of sediment delivery

to river systems associated with future climate

and land-use change.

V Conclusion

This paper identifies the ways in which an

invasive aquatic species, acting as a system dis-

turbance, has the potential to greatly modify fine

sediment dynamics within river catchments and,

hence, act as a driver of river management prob-

lems. A conceptual model outlines the key

mechanisms by which the signal crayfish may

influence fine sediment dynamics, from the

mechanistic impacts of individual crayfish

movements and activities on the local physical

environment to potential reach- and catchment-

scale influences on sediment stability and

connectivity, channel and bank morphology,

river hydraulics, and the mobilization and trans-

port of nutrients and contaminated sediments.

While the wider impacts of signal crayfish have

not been explored directly in previous literature,

established process knowledge of reach- and

catchment-scale sediment dynamics supports

the identification of key parameters which may

be affected. Outcomes will depend in part on

river character and behaviour in combination

with interactions between crayfish and other

organisms that may also be acting as geo-

morphic agents. While similar impacts may be

expected in association with the activities of

other (native) crayfish species, it is argued here

that the impacts of signal crayfish may be of par-

ticular significance due to their larger body size

and more aggressive nature, their presence in

catchments in extremely high densities, and the
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lack of effective removal or mitigation mea-

sures. This paper focuses on potential impacts

in regions where the signal crayfish represents

an invasive species and, hence, a disturbance

to which the river system may not be resilient.

However, it is possible that similar problems

may arise in regions where signal crayfish, or

other burrowing crayfish species, are endemic

and present in very high densities.

Further directed interdisciplinary research is,

therefore, required at the interface between

freshwater ecology, fluvial geomorphology and

hydraulics at various spatiotemporal scales in

order to quantify the significance of different

impacts, develop the hypotheses presented in

this paper and provide a sound scientific under-

pinning to the management of signal crayfish

impacts on sediment dynamics at a range of spa-

tiotemporal scales. In particular, research should

focus on: improved understanding of the

mechanistic impacts of signal crayfish on fine

sediments; quantification of the significance of

modifications to bed and bank sediments and

associated sediment mobilization and transport

within a range of different river environments;

the influence of biological interactions, particu-

larly with other organisms known to act as

significant geomorphic agents within rivers; and

exploration of the potential for current signal

crayfish impacts to exacerbated by future

changes in sediment dynamics associated with

changes in climate and land-use management.

This paper, and the suggested further research,

are necessarily interdisciplinary, and provide

an illustration of the advantages of coupling

various earth, environmental and biological

perspectives. To many, this exemplifies interest

in increasingly interconnected biophysical

phenomena and analyses, but it is also essentially

the pursuit and domain of physical geography.
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