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After deposition, volcanic glass hydrates with ambient water, recording the average hydrogen isotope ratio (δD
or δ2H) of local meteoric water during the hydration period. Previous researchers have used ancient glass δD
values to reconstruct paleotopography and paleoclimate, while others have questioned the long-term reliability
of the proxy as a recorder of ancient meteoric water. In this study, we sampled volcanic glasses ranging in age
~33 Ma to b50 ka from tuffs on the leeward (east) side of the Oregon Cascade Mountains. Our results strongly
suggest that volcanic glass acquires and preserves δD values that are proportional to the stable isotopic compo-
sition of environmental water at the time of ash deposition based on 1) a 20‰ difference in δD values between
samples of different ages (~8 Ma apart) from the same locality, 2) preservation of stable isotopic compositions
consistent with lacustrine and non-lacustrine depositional environments in coeval samples, and 3) substantial
differences between δD values of ancient volcanic glass (N1 Ma) and local meteoric water (converted to glass
δD values) throughout the study area.
We propose a paleoenvironmental interpretation of volcanic glass results that resolves previously published iso-
topic data and agrees well with the petrologic, structural, and stratigraphic record. Namely, the Oregon Cascades
have been a significant topographic barrier since at least themid-Miocene, and likely as far back as theOligocene.
Since reaching a topographic maximum during the eruption of Columbia River flood basalts in themid-Miocene,
surface elevations in Oregon have decreased, while the northern Cascades in Washington continue to rise.
Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
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1. Introduction

Hydrogen and oxygen isotope ratios from paleowater, derived from
various proxies, can elucidate changes in climate and elevation through
time (e.g. Garzione et al., 2000; Poage and Chamberlain, 2001; Kohn and
Cerling, 2002; Takeuchi and Larson, 2005; Bershaw et al., 2010; Canavan
et al., 2014; Saylor andHorton, 2014; Cassel et al., 2018). Environmental
water δD values, preserved within hydrated volcanic glass, have great
paleoenvironmental potential, largely due to their widespread deposi-
tion and the relatively long timescale of hydration in comparison to
other stable isotope proxies (e.g. Cerling and Quade, 1993). Tuffaceous
volcanic rocks also typically have dateable phenocrysts and can be spa-
tially correlated based on glass trace element compositions (Sarna-
Wojcicki, 1984; Cassel et al., 2012; Cassel and Breecker, 2017). Volcanic
glass shards hydrate readily when exposed to environmental water,
adding up to 10 wt% water. Recent studies have focused on sample
preparation methods and the timescales of preservation to effectively
isolate original environmental hydration water δD values (Dettinger
ss article under the CC BY-NC-ND lic
and Quade, 2014; Cassel and Breecker, 2017), because, like most
paleowater proxies, diagenetic alteration and sample impurities can
alter analytical results (Anovitz et al., 2009; Nolan and Bindeman,
2013).

Volcanic glass as a paleowater proxy has been applied across much
of western North America (Fig. 1) (e.g. Friedman et al., 1993b; Mulch
et al., 2008; Cassel et al., 2009, 2014; Fan et al., 2014; Cassel et al.,
2018), but studies that utilize ancient volcanic glass (N1 Ma) have yet
to be published in the Pacific Northwest. Here we present the first con-
straints on paleowater δD values in Oregon from volcanic glasses with
ages ranging from ~33 Ma to b50 ka. Samples from the lee (east) side
of the Cascade Range provide a record of regional surface elevation
and paleoclimate that we interpret within the context of previously
published research. Volcanic glass δD values from central Oregon are
lower than modern water (converted to glass δD) from early Oligocene
to mid-Miocene time, after which δD values increase significantly to
present. We suggest that the Oregon Cascades have been a significant
topographic barrier since the early Oligocene, and that surface eleva-
tions in Oregon decreased after eruption of Columbia River flood basalts
(CRBs) in the mid-Miocene, consistent with a tectonic reorganization
that reduced subduction-related arc volcanism and initiated rifting in
Oregon at that time.
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvolgeores.2019.05.021&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jvolgeores.2019.05.021
jbershaw@gmail.com
https://doi.org/10.1016/j.jvolgeores.2019.05.021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/03770273
www.elsevier.com/locate/jvolgeores


N

Fan et al. (2014)

Cassel et al. (2009, 2014, 2018)
41-23 Ma

36-5 Ma

36-0.05 Ma

Mulch et al. (2008)
12-0.5 Ma

THIS STUDY

Montana

Idaho

Washington

Arizona New Mexico

Colorado
Utah

Nevada

Wyoming
Oregon

Pacific
Ocean California

-115° -110° -105°-120°

34°

38°

42°

46°

0 100 200 km

Fig. 1.Hillshademap of the western United States with area of this study labeled. Locations of other volcanic glass paleowater proxy studies N10 ka are shown (Mulch et al., 2008; Cassel
et al., 2009, 2014; Fan et al., 2014; Cassel et al., 2018).
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2. Background

2.1. Topographic history of the Pacific Northwest

In this study, we focus on the lee (east) side of the Cascade Moun-
tains in central Oregon, characterized as a semi-arid plateau, averaging
~1 km in elevation today (Fig. 2). Central Oregon lies in the rain shadow
of the High Cascade Range which strikes roughly north-south and aver-
ages ~1.5 km in elevation in Oregon (Fig. 3). Further west is the Coast
Range, which is subparallel to the Cascades and averages ~500 m in el-
evation in Oregon. Cenozoic topography throughout the Pacific North-
west has varied significantly in both space and time. Central Oregon
was at sea-level in the mid-Cretaceous (~100 Ma) based on the pres-
ence of marine sedimentary rocks (Kleinhans et al., 1984).
Subduction-related volcanic and non-marine volcaniclastic rocks of
the Clarno Formation erupted in central Oregon starting at ~54 Ma
(Vance, 1988; Bestland et al., 1999), and provide the first Cenozoic evi-
dence for extensive subaerial relief. Fossils, paleosols, and sedimentary
lithofacies in the Clarno Formation suggest that both tropical lowlands
and temperate highlands existed at this time (Retallack, 1991;
Bestland et al., 2002).

Subduction moved westward following accretion of the oceanic ba-
saltic Siletzia terrane to North America at about 50 Ma (Snavely Jr and
Wells, 1996; Wells et al., 2014). Volcanism shifted west from central
Oregon to the modern Cascade arc at ~44 Ma (Snavely Jr and Wells,
1996; Bestland et al., 2002), resulting from subduction of the Juan de
Fuca plate beneath North America. By ~35 Ma, the Cascades Range
was established from northern California to present-day Mount Rainier
(Priest, 1990). Thick accumulations of ignimbrites and ash layers in the
John Day Formation in central Oregon, which spans from the Eocene to
early Miocene (~39–18Ma), are evidence of extensive volcanism in the
early Cascades (Robinson et al., 1984). Relative to the Quaternary, large
eruption volumes from the arc during the Eocene to earlyMiocene coin-
cide with high plate convergence rates (Verplanck and Duncan, 1987).
Volcanic rocks interfinger with thick packages of arc-derived marine
sedimentary rocks on the west side of the Cascades during this time,
suggesting the Coast Range had not yet developed (Niem et al., 1985;
Niem et al., 1992; Retallack et al., 2004a). The emergence of a continu-
ous, subaerial Coast Range in the early Miocene (~20 Ma) pushed ma-
rine deposition westward to its modern location (Snavely Jr and
Wells, 1996). Compared to the Olympic Mountains in Washington, the
Coast Range in Oregon is relatively low in elevation, possibly because
of reduced coupling between Siletzia and subducting oceanic crust
(Bodmer et al., 2018). Fossils and paleosols from the John Day Forma-
tion in central Oregon indicate progressively drier and more open con-
ditions inwooded grasslands by the earlyMiocene, influenced by global
climate change and a developing rain shadow (Retallack, 1991;
Retallack, 2004).



Fig. 2.Digital ElevationMap (DEM) of Oregon showing topography and localities for volcanic glass samples analyzed in this study. Circle color indicates δD values (‰ relative to VSMOW)
binned by 10‰ increments. The gray dashed line shows the general trend of the Cascade Mountains.
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Volcanism in the Cascade arc remained voluminous until the mid-
Miocene, when it waned significantly, possibly due to a slowing of the
convergence rate between the North American and Farallon plates
(Verplanck and Duncan, 1987; Priest, 1990; Taylor, 1990; Conrey
et al., 1997). Beginning ~16.7 Ma, Columbia River flood basalts (CRBs)
inundated Oregon and Washington, reaching a thickness of N4 km
east of the Cascades (Beeson et al., 1989; Barry et al., 2013; Reidel
et al., 2013). At this time, the Cascade arc was relatively quiet, withmin-
imal activity until ~7 Ma (Priest, 1990; Smith, 1993), when lavas,
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ignimbrites, and volcaniclastics of the Deschutes and Rattlesnake For-
mations were deposited in central Oregon (Smith et al., 1987; Streck
and Grunder, 1995; Pitcher et al., 2017). Fossils and paleosols from
these late Miocene units are interpreted to represent a semi-arid, cool
climate, similar to that found in central Oregon today (Retallack, 1991;
Retallack et al., 2002).

In addition to reduced arc volcanism, the middle to late Miocene
marked the initiation of rifting in the Cascade arc, starting in southern
Oregon and propagating northward along the arc at ~40 km/Ma
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(Guffanti andWeaver, 1988; Conrey et al., 1997). Low potassium tholei-
ites (mid-ocean ridge-like basalts) erupted from the arc during rifting
and extend into southern Washington, marking the northern extent of
rifting. Elevated hydrothermal heat discharge in the Oregon Cascades
is attributed to rifting (Ingebritsen and Mariner, 2010). Data from geo-
thermal exploration wells suggest extension in the Oregon Cascades
has resulted in subsidence of ~1 to 3 km from north to south (Conrey
et al., 2002). Miocene-Pliocene rifting in the Oregon Cascades is likely
related to the clockwise rotation of the Oregon andWashington forearc
relative to North America and Basin and Range extension on its trailing
edge (Wells and Heller, 1988; Wells and McCaffrey, 2013). While rota-
tion has resulted in extension and subsidence in the Oregon Cascades,
the northward component of motion has caused compression in
Washington, as it collides with relatively stable Canadian basement
(Wells and McCaffrey, 2013). This is demonstrated by the east-west
striking Seattle reverse fault which initiated ~13.3 Ma (Brink et al.,
2002), north-south shortening in the Yakima fold and thrust belt since
~15 Ma (McCaffrey et al., 2016), and accelerated rock uplift rates in
the Washington Cascades during the late Miocene (Reiners et al.,
2002). Our volcanic glass results from central Oregon provide a record
of regional surface elevation and paleoclimate that we interpret within
this geologic context.

2.2. Meteoric water as a proxy for topography and climate

Pacific Northwest climate is controlled by topography and its mid-
latitude location in the northern hemisphere where westerlies domi-
nate (Smith et al., 2005). The climate is characterized as Mediterranean
in that winters are wet and summers are dry. In the wet season, moist
southwesterly air cools overland and encounters orographic barriers
(the Coast Range and CascadeMountains), resulting in steady precipita-
tion (Roe, 2005). There is a stark contrast in precipitation amount across
the region exemplified by the Hoh rain forest on the west side of the
Olympic Mountains (Washington) which receives up to 400 cm annu-
ally, and Richland, a town located in the rain shadow (east) of the Cas-
cades, which receives b20 cm of precipitation (Whiteman, 2000). By
summer, the polar jet stream shifts northward and high-pressure cells
associated with the subtropical horse latitudes develop over the north
Pacific and continental interior, resulting in persistently dry conditions
from late June into September. Patterns of atmospheric circulation in
the Pacific Northwest have not changed drastically through the Ceno-
zoic, as inferred from depositional patterns of air-fall tuffs in the John
Day Formation of central Oregon (Robinson et al., 1990).

Stable isotopes of meteoric water (δ18O and δD) may be used to es-
timate surface elevation in regions where precipitation conforms to a
simple model of Rayleigh distillation (Rowley and Garzione, 2007).
This relationship for δD is observed on the windward (west) side of
the Cascade Mountains (−20.3‰/km) (Fig. 3) and is similar to global
averages (−22.4‰/km) (Poage and Chamberlain, 2001; Brooks et al.,
2012). The relationship between isotopic composition and elevation is
complicated by subcloud and surfacewater evaporation east of the Cas-
cades. Evaporation under low relative humidities increases δ18O and δD
values of the residual meteoric water (Gat, 1996), which can obscure
the relationship between the isotopic composition of meteoric water
and elevation (Kurita and Yamada, 2008; Bershaw et al., 2016). Many
studies have used modern or Rayleigh modeled isotope-elevation rela-
tionships (isotopic lapse rates)with a range of temperature and humid-
ity inputs to constrain temporal changes in elevation. These are based
on the isotopic composition of ancient water, inferred from proxies in
the rock record such as paleosol carbonates, mammal teeth, volcanic
glass, lipid biomarkers, and select clays (e.g. Garzione et al., 2000;
Mulch et al., 2006; Wang et al., 2008; Kent-Corson et al., 2009;
Bershaw et al., 2010; Leier et al., 2013; Cassel et al., 2014; Saylor and
Horton, 2014; Kar et al., 2016). A material can be used as a
paleoenvironmental proxy if, 1) it is hydrated by meteoric water at or
near the time of deposition, 2) isotope fractionation between water
and the proxy material is predictable, and 3) the proxy material resists
further isotope exchange or diagenetic alteration. Each paleoaltimeter
may reflect different types of meteoric water and integrate over differ-
ent time scales (Rowley and Garzione, 2007).

2.3. Hydration of glass by environmental waters

Ross and Smith (1955) suggested that volcanic glass incorporates
and preserves environmental water soon after deposition and
Friedman et al. (1993b) showed that volcanic glass preserves its hydro-
gen isotope composition over geologic timescales. In contact with a
glass surface, ambient water will hydrate the glass via the removal
and replacement of large-radius ion sites within the glass with H+
and D ions and diffusion through glass pores (Cailleteau et al., 2008;
Casey, 2008; Valle et al., 2010; Cassel and Breecker, 2017). The rate of
hydration exponentially decreases with time, suggesting that the hy-
drogen isotope composition of hydrated volcanic glass is largely deter-
mined by early exposure to meteoric waters (Friedman et al., 1993b;
Nolan and Bindeman, 2013; Gin et al., 2018). It has been shown that vol-
canic glass hydration rates are not significantly affected by climate
(Seligman et al., 2016). Within 10 ka, a silica-rich and insoluble oxide-
depleted “gel layer” or “passivating layer” forms on the outermost sur-
face of glass shards due to the reorganization of silica bonds and release
of soluble elements via corrosion (Gin et al., 2015). Upon the formation
of this layer, the diffusion rate decreases by 3–10 orders of magnitude
and can continue to decrease over time (Techer et al., 2001; Valle
et al., 2010; Gin et al., 2018).

When volcanic glass hydrates, hydrogen isotopes fractionate so that
less deuterium(Dor 2H) is incorporated into the amorphous glass struc-
ture relative to protium (1H), causing a roughly −30‰ shift in the δD
value of glass relative to hydrating meteoric waters. This fractionation
is empirically defined by Friedman et al. (1993a) using 7 Ma glass
spheres from Idaho and a 20 ka ash from New Zealand:

δDenvironmental water ¼
1000þ δDglass
� �

0:967
–1000 ð1Þ

The fractionation factor in Eq. (1) assumes surface temperature and
pressure, as ash takes 103–104 years to reach full hydration (Friedman
et al., 1966; Cassel and Breecker, 2017).

2.4. Magmatic water

Prior to hydration by environmental water at the time of quenching,
ash contains ~0.1–0.6% magmatic water (Smith, 1960a, 1960b;
Friedman et al., 1993b). Though the range inmagmatic water δD values
is large (Kyser and O'Neil, 1984; Harford and Sparks, 2001), it is likely to
have higher δD values than meteoric water in the lee of the Cascade
Mountains, as the latter is relatively negative (b−90‰) (Fig. 3). The iso-
topic composition of water in large glass shards with low water con-
tents (b1 wt% water) can have relatively high δD values (N−70‰),
which Seligman et al. (2016) interpret to reflect a mix of magmatic
and meteoric water. Studies have estimated the relative contribution
of meteoric relative to residual magmatic water in samples using non-
hydrated glass δD values (Seligman et al., 2016) or numerical models
and thermogravimetry (Giachetti and Gonnermann, 2013; Giachetti
et al., 2015; Martin et al., 2017). To minimize magmatic influence, we
focus on samples with N2 wt% water (e.g. Friedman et al., 1993b; Fan
et al., 2014) and small glass shard sizes (b150 μm) that are more likely
to be fully hydrated with meteoric water based on hydration rate mea-
surements (Cassel and Breecker, 2017).

2.5. Post-hydration alteration of δD values

Volcanic glass δD values may be altered long after secondary hydra-
tion by environmental water due to a number of factors. Amorphous
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glass is thermodynamically unstable compared tomineral phases and is
prone to aqueous corrosion including dissolution, alteration, and sec-
ondary mineral formation, particularly at elevated temperatures
(Sheppard and Gude, 1968; Casey, 2008). Alteration is dependent on
environmental conditions such as the temperature and composition of
pore fluids and glass, and commonly results in clay mineral growth or
complete conversion to clay or zeolite minerals. Nolan and Bindeman
(2013) report significant (N100‰) changes in the δD values of glass
from Mazama ash samples (7.7 ka) exposed to deuterium labeled
water (δD N 650‰) at relatively low temperatures (20–70 °C). Cassel
and Breecker (2017) also observe a change in δD values of bulk volcanic
glass samples immersed in deuterium labeled water with δD N 18
(18,000‰) for one to two years when samples are not acid abraded
prior to analysis, and so attribute this to the addition of precipitates at
or near the glass surface. These precipitates are often distributed hetero-
geneously on glass particles, which can cause large variability in mea-
sured values of wt% H2O and δD (Gin et al., 2011; Hellmann et al.,
2015; Cassel and Breecker, 2017; Martin et al., 2017).

The potential for post-hydration alteration of δD values raises the
question of whether published volcanic glass records that show δD
values similar to modern through time are due to re-equilibration with
modern water (e.g. Mulch et al., 2008; Canavan et al., 2014). Though
this continues to be a concern, there is evidence that the isotopic compo-
sition of syn-depositional paleowater is being preserved, but often re-
quires careful sample preparation to isolate. For example, volcanic
glasses of Eocene age from differing original depositional environments
(lacustrine vs. fluvial) exhibit significant differences in δD values of
N100‰, despite being exposed to similar post-depositionalmeteoric wa-
ters for millions of years (Cassel et al., 2014; Cassel and Breecker, 2017).
Contamination can impact the overallmeasured δD value, and some pre-
cipitates on shard surfaces can hold significantly more water (12–36 wt
%) than glass (2–10wt%). A combination of hydrofluoric (HF) and hydro-
chloric (HCl) acid abrasion and heavy liquid separation has been sug-
gested as the most effective way to isolate pure glass shards from
hydrated minerals and precipitates adhered to glass surfaces (Cassel
and Breecker, 2017).
3. Methods

We targeted felsic volcanic ash samples from across Oregon that
range in age from ~33 Ma to b50 ka based on published radiometric
and stratigraphic ages (Fig. 2 and Table 1). We collected ~0.5–1 kg of
vitric material with no visible evidence of weathering from 5 to 10 cm
beneath surface exposures. In total, we analyzed 13 samples from
11 units. Additional information on sample localities, descriptions, and
age constraints can be found in Supplementary materials Appendix A.

We used sample preparation methods designed to isolate the isoto-
pic composition (δD) of environmental water within 10 ka of deposi-
tion. We sieved shards for a specific grain size fraction (70–150 μm) to
minimize the influence of magmatic water. Larger shards may have
pristine glass in the center with relatively higher δD values, low water
content, and lower overall reproducibility, suggestive of a contribution
of magmatic water from the center of larger shards (Dettinger and
Quade, 2014; Seligman et al., 2016). In addition, large shards may not
completely de-gas during TC/EA analysis (Martin et al., 2017). Samples
between 70 and 150 μm have also been shown to be more homoge-
neously hydrated (≥2% water) (Cassel and Breecker, 2017).

We used heavy liquid and magnetic separation to isolate glass
shards from other tuff components (e.g. Sarna-Wojcicki, 1984; Mulch
et al., 2008; Cassel and Breecker, 2017; Smith et al., 2017). We rou-
tinely checked each sample for purity via petrographic analysis and
stopped when samples contained ≥99% isotropic glass. Adhering phe-
nocrysts can be problematic for some ashes, including Mazama ash
which contains adhered micro-phenocrysts (Seligman et al., 2016).
These minerals may have melt inclusions containing magmatic
water, which affects glass δD values (Kent, 2008; Moore, 2008;
Cassel and Breecker, 2017).

Samples were abraded with 8% HF to remove surface precipitates
and altered glass, and to detach adhered phenocrysts. Samples that ap-
peared altered (i.e. exhibited birefringence in cross-polarized light)
after two rounds of HF treatment were not analyzed. Whether HF abra-
sion is necessary for glass δD value analysis is debated, as HF pre-
treatment in relatively young glass (b1Ma) has been shown to increase
variability between unique samples (Dettinger and Quade, 2014;
Seligman et al., 2016), but to decrease inter-replicate variability
(Cassel and Breecker, 2017). Older samples (N1 Ma) in these studies
do not show evidence of alteration from HF abrasion, regardless of de-
position environment. Numerous studies have used HF to reduce the
presence of surface precipitates thatmay form long after ash deposition
(e.g. Mulch et al., 2008; Cassel et al., 2014; Fan et al., 2014; Pingel et al.,
2014; Rohrmann et al., 2016; Smith et al., 2017).

Samples were analyzed at the Light Stable Isotope Lab at the Univer-
sity of Texas at Austin on a TC/EA coupled to a MAT-253 IRMS following
Cassel and Breecker (2017). Reported wt% water and δD values are the
averages of two analyses (one replicate) (Table 1). Age ranges include
2σ uncertainty based on radiometric dates or relative dating based on
stratigraphic context. International standard δD values were reproduc-
ible within ±3‰ (2σ). Detailed descriptions of sample preparation
and analytical methods are included in Supplementary materials Ap-
pendices B and C.

4. Results

4.1. Volcanic glass water content

The average inter-replicate range in water content for samples is
0.12% (Table 1). The water content in samples averages 4.79 wt% (σ
= 3.0). The water content within a sample does not show a significant
correlation with age (R2 = 0.1) (Fig. 4). Water content does appear to
be related to sample texture, with welded samples (excluding sample
CVG023 from the windward side of the Cascades) having the least
water (average = 2.63 wt%) and non-welded samples containing
more water (average = 4.61 wt%) (Table 1).

4.2. Volcanic glass δD values

For all samples, the inter-replicate range in δD values averages 1.7‰.
One sample (CVG036) with an exceptionally low wt% water content
(1.16%) had an anomalously high range in δD values among replicates
(5.4‰). We do not observe a significant correlation between δD value
and age (R2 b 0.01) (Fig. 5).

5. Discussion

5.1. Evidence that volcanic glass preserves paleoenvironmental water

If volcanic glass continuously re-equilibrates with meteoric waters,
all glass samples exposed to similar modern waters should have similar
δD values, regardless of age. However, samples show unit-dependent
variation in δD values at one location, consistent with preservation of
original meteoric hydration waters and reflecting changes in the δD
values of meteoric water over time. Three unwelded samples of differ-
ent ages were collected within three kilometers of one another and
are currently exposed to precipitation with similar δD values, so have
access to similar ambient pore waters. Glass in sample CVG038 from
the Rattlesnake Tuff (~7 Ma) yields a δD value of −145.5‰. Two glass
samples from the underlying Mascall Formation 15.8 Ma), CVG034
and CVG035, have δD values within 2.5‰ of each other: −165.6‰ and
−163.3‰, ~20‰ lower than the overlying Rattlesnake tuff. These re-
sults suggest that volcanic glass is preserving original
paleoenvironmental water δD values from the time of ash deposition,
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consistent with other studies (Friedman et al., 1993b; Cassel and
Breecker, 2017; Smith et al., 2017). Though unlikely, we cannot rule
out the possibility that recent groundwater is affecting the Rattlesnake
Tuff sample (CVG038)without affecting theMascall Formation samples
(CVG034 and CVG035), resulting in variable δD values within a single
outcrop (e.g. Sanyal et al., 2005).

Lakes may exhibit much higher δD values (N100‰) compared to
nearby streams and precipitation (Fig. 3), particularly in closed, evapo-
rative basins (Gonfiantini, 1986; Talbot, 1990). The Devine Canyon Tuff
sample (CVG040) was collected above a tabular diatomite bed indica-
tive of a lacustrine depositional environment. For this lacustrine sample,
the δD value was over 10‰ higher than any other non-welded sample
from the rain shadow (east) of the Cascades (solid diamond in Fig. 5),
suggesting that its isotopic composition is reflective of its depositional
environment relative to other ancient glass samples. Though the sample
was not N99% pure glass, low inter-replicate variability (b2‰) suggests
that the relatively high δD values are reliable.

Lastly, ancient glass (N1 Ma) has consistently more negative δD
values than modern water nearby, suggesting re-equilibration with
modern water is not occurring. East of the Cascades (N −122° longi-
tude), modern meteoric water δD values, converted to glass δD values
using Eq. (1) are N−145‰ while ancient volcanic glass δD values are
b−145‰ (Fig. 6). Recent (b50 ka) volcanic glass δD values generally
overlap with modern stream water converted to glass. The exceptions
are three samples near the Cascade crest that have more negative δD
values than modern water.
5.2. Paleoenvironmental interpretations

We limit our discussion to volcanic glass samples thatwere hydrated
by stream water or precipitation as they are a more accurate proxy for
paleoclimate and topography (Table 1). δD values from volcanic glass
are averaged within 2 Ma increments to show temporal trends in the
context of other paleowater proxies and major tectonic and climatic
events (Fig. 7). Starting in the Oligocene, average volcanic glass δD
values in central Oregon decrease 9.1‰ from −155.4‰ to a minimum
of−164.5‰ in themid-Miocene. Volcanic glass δD values progressively
increase from the mid-Miocene to present by 34.6‰. This is the differ-
ence between mid-Miocene (15.8 Ma) and recent volcanic glass
(7.7–b50 ka), the latter of which averages −129.9‰ and is largely
based onMazamaash samples published in Seligman et al. (2016) (Sup-
plementary Table S1). Though the range in recent volcanic glass δD
values is large (1σ standard deviation of 13.4‰), they are consistent
with modern water converted to glass (Figs. 5 and 7). Prior to consider-
ing changes in δD values related to local climate and surface elevations,
we assess the impact of global climate change on these trends.

Changes in temperature at the oceanic source of vapor impact the
isotopic composition of meteoric water downwind (Rozanski et al.,
1993). However, sea-surface temperatures at mid-latitudes (~45°) in
the Northern Hemisphere have not shifted significantly through the Ce-
nozoic relative to the Holocene (Zachos et al., 1994). That said, the iso-
topic composition of the ocean, from which most Pacific Northwest
moisture is derived, has evolved through the Cenozoic due to changes
in polar ice-volumes (Zachos et al., 2001). An ice sheet became
established over Antarctica sometime in the late Eocene (Fig. 7). Partial
melting of the ice-sheet in the late Oligocene led to a decrease in ocean
δ18O of ~0.7‰ (δD ~5.5‰= δ18O ∗ 8) (Zachos et al., 2001). This may ex-
plain over half of the modest 9‰ decrease we observe in volcanic glass
from Oligocene to mid-Miocene time. After the mid-Miocene Climatic
Optimum, ice-sheets became established at both poles by the mid-
Pliocene, increasing ocean δ18O by ~2‰ (δD ~16‰ = δ18O ∗ 8). This
could account for less than half of the 34.6‰ increase in δD that we ob-
serve from themid-Miocene to present, leaving an increase of 18.6‰ (±
13.4‰) that is related to regional topography and local climate change.
Uncertainty is based on the 1σ standard deviation in recent (7.7 ka)
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volcanic glass published in Seligman et al. (2016) and our single Quater-
nary ash sample (Fig. 5).

An increase in δD values since themid-Miocene could be interpreted
as aridification in a developing Cascade Range rain shadow. Higher arid-
ity during the late Miocene and Pliocene would likely cause subcloud
evaporation of raindrops and evaporative enrichment of surface waters
as observed in many lee sides of mountain ranges (Kent-Corson et al.,
2009; Saylor et al., 2009; Caves et al., 2015; Bershaw et al., 2016). This
is the interpretation proposed by previous workers who conclude that
the Cascade Mountains have increased in surface elevation since the
mid-Miocene (Kohn et al., 2002; Takeuchi and Larson, 2005; Kohn and
Law, 2006; Takeuchi et al., 2010). In these studies, decreases in δ18O of
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paleowater proxy minerals are interpreted as an increase in Cascade
Mountain surface elevation while increases in δ18O are interpreted as
aridification in the attendant rain shadow (Fig. 7). This ambiguity dem-
onstrates how paleowater proxy records themselves are often
underconstrained, resulting in non-unique solutions or interpretations
(e.g. Ehlers and Poulsen, 2009; Galewsky, 2009; Botsyun et al., 2019).
Here we propose an alternative interpretation: that an 18.6‰ increase
in volcanic glass δD values since the mid-Miocene is due to a decrease
in surface elevation of theOregon Cascades over that time, in agreement
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with previously published petrologic, structural, and stratigraphic re-
search on Cascade evolution.

Subsidence following the eruption of the CRBs in the mid-Miocene is
consistentwith a lull in Cascade volcanism and the development of rifting
in the Oregon Cascades (Priest, 1990; Conrey et al., 1997, 2002). Prior to
rifting in Oregon, it is plausible that the minimum δD values in the mid-
Miocene reflect high topography associated with emergence of the Ore-
gon Coast Range and eruption of the CRBs, which spread out across Ore-
gon and Washington and followed the ancestral Columbia River
through the Cascades to the Pacific Ocean. Voluminous flood basalts
would have filled topographic lows, reducing low elevation pathways
for westerly-derived moisture, causing a decrease in the isotopic compo-
sition of meteoric water (e.g. Lechler and Galewsky, 2013). Geophysical
evidence shows that regional thermal uplift also peaked at CRB time,
when a large volume of hot mantle intruded underneath the Pacific
Northwest, followed by subsidence (Zhou and Liu, 2019).

A lowering of surface elevations in Oregon since themid-Miocene is
also consistent with an increase in δ18O values of paleosol carbonates
and bone (Fig. 7). Meanwhile, a ~4‰ decrease in δ18O from clay samples
in central Washington (Takeuchi and Larson, 2005) suggests the
Washington Cascades may have increased in surface elevation while
theOregon Cascadeswere subsiding. In fact, contemporaneous shorten-
ing inWashington and extension in Oregon is predicted by themodel of
Cascade arc rotation described by Wells and McCaffrey (2013). An in-
crease in δ13C values since the mid-Miocene from paleosol carbonates
and bone from central Oregon (not shown) have been interpreted as
aridification in an emerging Cascade rain shadow (Kohn and Law,
2006; Takeuchi et al., 2010). However,modeling of atmospheric circula-
tion over mountain ranges suggests there is a threshold elevation over
which rain shadow development stops (Galewsky, 2009). Thus, a de-
crease in elevation of the Cascade Mountains does not require a more
temperate climate in the lee, so long as a rain shadow threshold eleva-
tion is met. In addition, temperate highlands and semi-arid, grassy low-
lands have coexisted in central Oregon since theOligocene, based on the
interpretation of dissimilar climates at the same stratigraphic levels
throughout the John Day Formation (Retallack, 1991; Bestland et al.,
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1999).Within the Oregon Cascade rain shadow today, more arid condi-
tions exist at lower elevations, which could explain increases in paleosol
and bone δ13C values since the mid-Miocene.

Our oldest volcanic glass data shows that δD values from central Ore-
gon were also relatively low prior to CRB eruption. The largest observed
variation in ancient glass δD values is not temporal, but spatial, from the
west to east side of the Cascade Mountains. The 26 Ma Tuff of Foster
Dam sample (CVG023), collected from the west side of the Cascades, is
47‰ higher than the 32 Ma Tuff of Dale sample (CVG013), collected
east of the Cascades (Fig. 5). This suggests that the Cascades have been
a topographic barrier since the Oligocene. Late Oligocene paleosols and
fossils from the John Day Formation in central Oregon are indicative of a
semi-arid climate similar to today, supporting the existence of a rain
shadow at that time (Retallack, 2004; Retallack et al., 2004b). Some to-
pography associated with the Cascades magmatic arc likely existed
throughmuch of the Cenozoic as subduction has occurred near its current
position since ~45 Ma, after the Siletzia Terrane accreted onto North
America (Sherrod and Smith, 2000; Schmandt and Humphreys, 2011;
Wells et al., 2014). Paleogene igneous rocks and volcaniclastic rocks of
the John Day Formation show that an extensive magmatic arc was
established from northern California to Mount Rainer in Washington
State by the Oligocene (Robinson et al., 1984; Priest, 1990; Bestland
et al., 1999).

6. Conclusions

Our results indicate that volcanic glass preserves paleowater δD
values, as samples from units of different ages at the same locality
yield distinct δDvalues (20‰difference) that reflect their original depo-
sitional environments, and Oligocene to Miocene volcanic glass δD
values in central Oregon are generally lower than recent glass
(b50 ka) and modern meteoric water converted to glass. Volcanic
glass continues to be a valuable addition to paleowater proxy toolkits
but requires an understanding of unit depositional environment and
water-glass interaction, from original magmatic water to secondary hy-
dration, as well as strict adherence to sample preparation protocols, for
robust estimation of paleowater δD values.

Previous researchers have interpreted trends in paleowater proxies
from central Oregon and Washington as an increase in surface eleva-
tion of the Cascades since ~15 Ma, resulting in lee side aridification. Al-
ternatively, we suggest the Oregon Cascades have been a major
topographic barrier since at least the mid-Miocene, and likely as far
back as the Oligocene. After reaching a topographic maximum during
the eruption of CRBs, surface elevations in Oregon have decreased,
while the northern Cascades in Washington continue to rise. Using
the modern isotopic lapse rate observed in the Oregon Cascades of
−20.3‰/km (Brooks et al., 2012), an increase in δD values of 18.6‰
± 13.4 (corrected for changes in global ice volume) equates to a de-
crease in elevation of 916 m ± 660 m since the mid-Miocene. Uncer-
tainty is based on 1σ standard deviation of recent (b50 ka) volcanic
glass. This estimate is consistent with subsidence estimates for the
Cascades in northern Oregon (Conrey et al., 2002), but may also be re-
lated to CRB denudation and/or regional thermal subsidence (Zhou
and Liu, 2019).
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