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Assessing rockfall susceptibility in steep

and overhanging slopes using three-dimensional
analysis of failure mechanisms

Abstract Rockfalls strongly influence the evolution of steep rocky
landscapes and represent a significant hazard in mountainous
areas. Defining the most probable future rockfall source areas is
of primary importance for both geomorphological investigations
and hazard assessment. Thus, a need exists to understand which
areas of a steep cliff are more likely to be affected by a rockfall. An
important analytical gap exists between regional rockfall suscep-
tibility studies and block-specific geomechanical calculations.
Here we present methods for quantifying rockfall susceptibility
at the cliff scale, which is suitable for sub-regional hazard assess-
ment (hundreds to thousands of square meters). Our methods use
three-dimensional point clouds acquired by terrestrial laser scan-
ning to quantify the fracture patterns and compute failure mech-
anisms for planar, wedge, and toppling failures on vertical and
overhanging rock walls. As a part of this work, we developed a
rockfall susceptibility index for each type of failure mechanism
according to the interaction between the discontinuities and the
local cliff orientation. The susceptibility for slope parallel
exfoliation-type failures, which are generally hard to identify, is
partly captured by planar and toppling susceptibility indexes. We
tested the methods for detecting the most susceptible rockfall
source areas on two famously steep landscapes, Yosemite Valley
(California, USA) and the Drus in the Mont-Blanc massif (France).
Our rockfall susceptibility models show good correspondence with
active rockfall sources. The methods offer new tools for investi-
gating rockfall hazard and improving our understanding of rock-
fall processes.

Keywords Rock mass - Slope stability - Exfoliation
failure - Terrestrial laser scanner - Yosemite Valley - The Drus

Introduction

The evolution of steep rocky landscapes is strongly influenced by
the occurrence of rockfalls (Varnes 1978; Selby 1982; Matsuoka and
Sakai 1999; Hungr et al. 1999; Hales and Roering 2007; Moore et al.
2009; Stock and Uhrhammer 2010; Barlow et al. 2012). However,
predicting locations where future rockfalls will occur remains
challenging and speculative. Rosser et al. (2007), Abellan et al.
(2010), and Royan et al. (2014) demonstrated the possibility of
forecasting rockfalls according to precursory deformation, but
often, such deformation is either not present or not detectable
prior to failure, especially in strong rocks such as granite.
Assessing rockfall hazard requires knowledge of which areas are
exposed to the impacts of rock blocks below unstable cliffs
(Einstein 1988; Evans and Hungr 1993; Crosta and Agliardi 2003;
Dorren and Seijmonsbergen 2003; Guzzetti et al. 2003; Baillifard
et al. 2003). Thus, accurate determination of the most likely rock-
fall source areas is of primary importance for reliable rockfall
hazard assessment (Harp and Noble 1993; Mazzoccola and
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Hudson 1996; Aksoy and Ercanoglu 2006; Copons and Vilaplana
2008; Vangeon et al. 2001; Guzzetti et al. 2003; Wieczorek et al.
2008).

Two scales of analysis are commonly used to investigate rock-
fall susceptibility: regional studies that cover entire valleys or
regions (areas of square kilometers) and block-specific studies
that investigate the stability of a single rock compartment (areas
of square meters). Regional studies are usually based on general
morphological parameters, such as slope steepness, that are ana-
lyzed in GIS environments using aerial digital elevation models
(DEMs) (Strahler 1954; Wieczorek and Snyder 1999; Guzzetti et al.
2003; Frattini et al. 2008; Loye et al. 2009; Michoud et al. 2012;
Messenzehl et al. 2016). In contrast, block-specific geomechanical
stability calculations can be applied only locally, using simplified
topographies (Eberhardt 2003; Grenon and Hadjigeorgiou 2008;
Gischig et al. 2011). The determination of the many detailed pa-
rameters necessary for geomechanical calculations requires exten-
sive laboratory tests and fieldwork, which can be further hampered
by dangerous field conditions. For the purposes of determining
potential future rockfall sources from a cliff, regional studies tend
not to be sufficiently accurate, and block-specific geomechanical
studies are often too narrowly specific in their calculation and
application to be more widely applicable. Thus, a critical gap exists
between these two types of analysis, especially in large and over-
hanging cliffs with complex topography. Here we address this gap
by developing and evaluating methods for quantifying rockfall
susceptibility at the cliff scale (hundreds to thousands of square
meters).

Rockfall susceptibility assessment

Rockfall potential and susceptibility at the cliff scale are strongly
linked to slope morphology. Accordingly, detailed terrain models
are critical for quantifying the activity of rockfall sources, estimat-
ing potential unstable volumes, and measuring the orientations of
the main joint sets that serve to destabilize rock masses (Terzaghi
1962; Selby 1982; Dershowitz and Einstein 1988; Priest 1993; Irigaray
et al. 2003; Ferrero et al. 2009; Stead and Wolter 2015). Terrestrial
laser scanning (TLS) and photogrammetry data are particularly
useful, as these ground-based techniques deliver high-resolution
three-dimensional models of topography (Wickens and Barton
1971; Slob and Hack 2004; Collins and Sitar 2008; Oppikofer
et al. 2008; Lato et al. 2009; Jaboyedoff et al. 2012; Abellan et al.
2014). Further, acquisition of ground-based data is mandatory
when investigating overhanging areas, which are poorly resolved
with airborne acquisitions (Paronuzzi and Serafini 2009; Tsesarsky
and Hatzor 2009; Stock et al. 2011, 2012; Dunham et al. 2017).
Moreover, photogrammetry performed with UAV can be useful
to cover a gap between aerial and terrestrial techniques and thus
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avoid hidden zones in terrain models (Niethammer et al. 2012; Nex
and Remondino 2014).

Unstable rock compartments are a direct consequence of the
arrangement of the discontinuities in a rock mass, so determining
rockfall susceptibility typically begins by measuring the orienta-
tions of those discontinuities (Hudson and Priest 1983). Several
methods exist to measure discontinuity orientations using terres-
trial point clouds (Jaboyedoff et al. 2007; Gigli and Casagli 2013;
Lato and Voge 2012; Voege et al. 2013; Riquelme et al. 2014), and
discontinuity spacing and trace length data can also be quantified
on terrestrial point clouds (Lato et al. 2009; Sturzenegger and
Stead 2009; Sturzenegger et al. 2011; Lato et al. 2012). The orienta-
tion of discontinuities relative to the slope surface then determines
the potential failure mechanisms (Goodman and Bray 1976; Hoek
and Bray 1981; Norrish and Wyllie 1996) and the probability of
mobilization. This can be assessed by performing kinematic anal-
yses on DEMs (Gokceoglu et al. 2000; Jaboyedoff et al. 2004;
Guenther et al. 2004, 2012). The angle between the
discontinuities and the slope, coupled with trace length and
spacing measurements, was employed by Jaboyedoff et al. (2004)
to calculate discontinuity density and the number of potential
slope failures. These results allow identification of the most prob-
able failure zones and form one possible input for rock slope
hazard assessment (Baillifard et al. 2003; Jaboyedoff et al. 2009;
Brideau et al. 2011). The calculation of the spatial distribution of
failure mechanisms on a mesh acquired by terrestrial laser scan-
ning was carried out by Fanti et al. (2013) with the objective of
securing the stability of a cultural heritage site and by Gigli et al.
(2012) to conveniently place trajectory profiles and accurately map
the rockfall hazard. Dunham et al. (2017) developed a point cloud-
derived approach for assessing rockfall hazard over large areas
based on an index or rockfall activity. The current study has points
in common with the works of Fanti et al. (2013), Gigli et al. (2012),
and Dunham et al. (2017): the use of high-resolution 3D point
clouds, the analysis of the failure mechanisms, and the investiga-
tion of overhanging slopes in order to improve the analysis of
rockfall hazard. In addition, this paper proposes new methods to
enhance the quantification of the susceptibility of a rock cliff area
to produce rockfalls. We focus on the detection of those areas most
susceptible to rockfalls driven by planar, wedge, and toppling
failure, as well as exfoliation-type failure (surface parallel) (Hoek
and Bray 1981) (Fig. 1). The methods applied are mainly based on
the geometrical intersection of joint sets with cliff topography. We
developed a routine to compute the failure mechanisms in three
dimensions, adapting the kinematic tests to analyze rock mass
stability also in overhanging areas. Our methodology begins with
the treatment of high resolution ground-based light detection and
ranging (LiDAR) point clouds to characterize the fracture patterns
found in rock cliffs. Following these procedures, we use the geo-
metrical information to perform a rockfall susceptibility assess-
ment at the cliff scale based on the calculation of the spatial
distribution of the main failure mechanisms. From the study of
rockfall processes in the field and from the analysis of past events,
we developed an index of susceptibility to failure for each type of
mechanism. Here we apply our methodology to two famously
steep landscapes with known rockfall hazard: Glacier Point cliff
in Yosemite Valley, California, USA (Wieczorek and Snyder 1999;
Wieczorek et al. 2008; Stock et al. 2011, 2012, 2013) and the west
face of the Drus on the Mont Blanc massif, France (Deline et al.
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2006; Ravanel and Deline 2008, 2011; Ravanel et al. 2010; Matasci
et al. 2015; Guérin et al. 2017).

Data acquisition and treatment

Our methodology for estimating rockfall susceptibility is by its
nature a data-dependent process. In the methodology and model
validation presented herein, we use data from our two case studies
(Glacier Point in Yosemite Valley, USA and the west face of the
Drus in the Mont-Blanc massif, France). Additional details for
each of these study areas are provided in subsequent sections
(Figs. 6 and 10).

Terrestrial laser scanning

For collection of high-resolution LiDAR data, we used an Optech
Ilris LR laser scanner at each study area to obtain point clouds
with a mean point spacing of 10 cm (Table 1). We then aligned the
different ground-based scans together with an Iterative Closest
Point (ICP) algorithm (Besl and Mckay, 1992; Chen and Medioni
1992) to obtain a complete point cloud of each study area. The
point clouds were georeferenced through alignment with 1 X 1 m
cell size aerial laser scanning (ALS) DEMs using identical ICP
algorithms as used for registration (Slob and Hack 2004; Stock
et al. 2011; Jaboyedoff et al. 2012; Abellan et al. 2014).

High-resolution photography

To color the point cloud data and sharpen the detail of the
resultant TLS meshes, we acquired high-resolution panoramic
photographs using a GigaPan robotic camera mount (Stock et al.
2011) with a Canon 5D camera body and a 300-mm lens. In this
method, hundreds of photographs are taken automatically follow-
ing a grid and then stitched together with the GigaPan software to
create a several gigapixel-sized image. From these panoramic
images, it is possible to extract high-resolution close-up images
to observe meter-scale details in high definition. Moreover, we
subsequently draped these photographs on the mesh of TLS point
clouds at each study area to obtain accurate 3D models of the rock
surface (Fig. 1c). This step was performed with 3DReshaper soft-
ware. The textured models are very useful to map joint sets,
identify rockfall scars, and compute rockfall volumes.

Methods
Characterizing fracture patterns

Joint orientations

Rockfall susceptibility is highly influenced by the orientations of
discontinuities such as joints, faults, bedding planes, and geo-
logic contacts (Goodman and Bray 1976; Hudson and Priest
1983; Stead and Wolter 2015). In our study areas, the primary
discontinuities are joints, and hereafter, we deal only with joint
orientations. We used Coltop3D software (Jaboyedoff et al.
2007) to measure the orientation of the joints from the point
cloud data and to obtain a distinct point cloud sub-grouping for
each joint set (Fig. 2a). The software computes the spatial
orientation (dip direction and dip) of each point within a point
cloud with respect to its neighboring points. It attributes a
unique RGB color to each spatial orientation, allowing accurate
identification of the major joint sets. Applied to dense 3D point



Fig. 1 Examples of cliff-scale failure mechanisms. a Planar failure scar in Yosemite Valley. b Steep wedge failures on the west face of the Drus (Mont-Blanc massif). ¢
Textured TLS point cloud mesh of part of Glacier Point cliff (Yosemite Valley) showing steep discontinuities dipping inside the rock mass and susceptible to toppling
detachments. d Pervasive exfoliation joints sub-parallel to the topographic slope in Yosemite Valley

clouds, Coltop3D allows for rapid identification of joint sets and
measurement of their orientations (Oppikofer et al. 2011;
Humair et al. 2013). The mean value of each joint set can be
determined with high accuracy using density stereographic pro-
jections. We used field observations and examination of high-
resolution photographs to ensure that our structural

Table 1 Terrestrial laser scanning acquisitions

Terrestrial laser scanning
Number of scan points

Number of scans

measurements were made on discontinuity-controlled bedrock
surfaces (Fig. 2b), as opposed to soil or talus-covered slopes or
erosion surfaces with little or no structural relevance. Tradition-
al field surveys (e.g., using a Brunton-type compass) were es-
sential for validating the orientation and the characterization of
the joint sets measured remotely.

Distance to the slope (m)

Angle of scanning (°)

The Drus 3 5

300-1000 10-30

Glacier Point 3 3

500-1500 10-20
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Schmidt stereonet
lower hemisphere

Fig. 2 a Visualization of the TLS point cloud of the northeast face of Glacier Point (Yosemite Valley). The point cloud is colored according to the orientation of the poles of
the points (stereographic projection). The white box highlights the close-up displayed in b—e where rockfalls occurred in 2008 (Stock et al. 2011) and 2013. b Selection of
points showing joint set J16. The stereographic projection displays the poles in a Schmidt stereoplot, lower hemisphere and equal area. ¢ High-resolution photograph of
the same area as b. The planes or the traces of J16 are contoured in white. d Joint spacing measurements for J16 (violet areas) along a profile. e Joint trace length

measurement on a point cloud colorized by joint orientation

Spacing of joint sets

To measure joint set spacing, we selected the points of a point
cloud that correspond to an individual discontinuity set. For
example, Fig. 2b shows the selection of points related to joint set
J16 in the Glacier Point cliff in Yosemite Valley. These points were
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investigated to measure set spacing along scanline profiles (ISRM
1978) (Fig. 2d). This procedure requires constructing a plane ac-
cording to the mean orientation of the set and calculating the
normal vector to the set. Along a cross section on the TLS data,
we then anchored a point at every joint. Subsequently, at every



anchored point, we created a plane parallel to the orientation of
the mean value of the set. These planes were constructed with the
orientation of the normal vector and with the coordinates of the
point. Then, the equation of each plane was exported and eventu-
ally the distance between the planes calculated. We applied this
process to every joint set along several cross sections, providing
the mean spacing of each set within the rock mass.

Trace length of joint sets

To obtain joint set trace length, we measured the delineated joint
sets previously identified by the joint set spacing analyses (Fig. 2d)
via manual inspection in our point cloud processing software. We
used TLS meshes textured with GigaPan photographs to accurately
follow the traces of the joints, even where discontinuity planes do
not outcrop and only a fracture is visible (Fig. 2e). We performed
dozens of measurements for every joint set along several scanline
profiles according to standardized statistical protocols (ISRM 1978;
Sturzenegger et al. 2011).

Analysis of failure mechanisms

We identified potential unstable slope areas in the point clouds
with a routine based on finding the intersection between the
orientation of the joint sets and the cliff topography. This calcula-
tion allows visualizing how many potential failure mechanisms are
possible in every part of the cliff (see subsequent sections). As this
initial analysis is only based on the existence of intersections at the
surface, it can be greatly refined for the rock mass as a whole by
considering additional parameters such as the joint set spacing,
joint set trace length, and the angles between the topography and
the joint sets (“Final rockfall susceptibility” section). In theory, a
given geometrical configuration can produce a failure, but in
reality, it may also be very unlikely to occur, for example, because
of the low steepness of the joint (Goodman and Shi 198s;
Jaboyedoff et al. 2004). Thus, we developed specific equations to
calculate an index of susceptibility for each type of failure (de-
scribed subsequently). To ensure accuracy in the calculations, we
tested every step of the routine with a synthetic point cloud
composed of a quarter of a sphere displaying several facets with
different orientations (Fig. 3).

Identification of potential failure areas

Following earlier work (Markland 1972; Hoek and Bray 1981;
Goodman and Shi 1985; Romana 1993; Norrish and Wyllie 1996),
we used the equations of kinematic tests to extract points where
planar, wedge, or toppling failure is geometrically possible in our
topographic models. By using ground-based TLS data to create 3D
models, we are able to compute failure mechanisms in overhang-
ing areas as well, which are not possible using airborne-based ALS
data and DEM-based software packages alone. Using Coltopo3D
software, we calculated the normal vector to every point of the
topography based on a mean number of ten neighbors (Jaboyedoff
et al. 2007). The choice of number of neighbors depends on the
density of the point cloud and the roughness of the cliff (frequency
of fractures) (Jaboyedoff et al. 2007). The normal vectors (pole) are
in the format dx—easting, dy—northing, and dz—positive,
resulting in vectors directed always upward. However, to perform
kinematic failure analysis, it is necessary to know which areas of a
3D model are overhanging and with consequentially actual normal

vectors facing downward (i.e., facing the ground). To define these
areas, we calculated a vector between the acquisition device and
every point of the scan. We then determined the scalar product
between this vector and the pole of the topography. When the
result is negative, the two vectors cannot be located in the same
half-sphere and thus are pointing in opposite directions. In these
cases, the normal vector was inverted, resulting in a negative dz
component that thereby identifies the overhanging areas of the
cliff (Fig. 3d). Subsequently, we calculated the dip direction and
dip (slope angle) of every point based on the three components of
the normal vector (Egs. 1 and 2; Fig. 3b, ¢):

8
Dip direction = |360—arctan®(dy, dx)% + 90 (1)
8
Dip = arccos(dz) o (2)
™

where dip direction and dip are in degrees and (dx, dy, dz) is the
normal vector (pole) of the slope. Moreover, when dz < o, the
point is located in an overhanging area and thus, the result of Eq. 1
must be increased by 180°.

In developing the equations for each of the failure mechanisms
derived in the subsequent sections, normal slope refers to those
areas of the cliff that have a dip direction toward the laser scanner
and have positive dz component of the pole, whereas overhanging
slopes are those that dip in the opposite direction, namely into the
cliff, and have negative dz (Fig. 3d).

Planar failure Two conditions must be satisfied for planar failure
on normal slopes (dz > o) (Bieniawski 1973, 1979; Romana 1985,
1993; Wyllie and Mah 2004):

ai—t< ap < o+t (3)
and
ﬁi < ﬁp (4)

where q; is the dip direction of a joint set 7, a,, is the dip direction of a
given point P, 3; is the slope angle of a joint , (3, is the slope angle of
the topography at a given point P, and ¢ is the tolerance of the dip
direction (to account for statistical distributions of joint measure-
ments). In our case study analyses, we use a value of t equal to 20°.

For overhanging areas (i.e., non-normal slopes, dz < 0), only one
condition is required because there is no need to restrain the
conditions according to the slope steepness (Fig. 4a):

(180 + aj)—t < ayp < (1804 ;) + ¢t (s)

The first loop of the routine verifies which points of the 3D point
cloud satisfy these requirements to potentially host a planar failure
according to the characteristics of the first joint set. Additional
loops repeat the task for the other joint sets.

Wedge failure A wedge failure is defined by two joints, herein
labeled i and j. The intersection line formed by the two joints is the
wedge axis and is characterized by its trend (c;;) and plunge (3).
Similar to planar failure, points where wedge failure can exist must
satisfy individual conditions for normal and overhanging slopes
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Fig. 3 Calculations on a synthetic quarter of a sphere point cloud. a Cross section of the synthetic point cloud. The white dotted lines show a shallow joint set oriented at
350°/30°, used for the calculations displayed in e. The white lines show a steep joint set oriented at 350°/80°, used for the calculations displayed in f. b and c display,
respectively, an oblique view of the dip and dip direction of the points. d Orientation of the normal vector (pole) of each point. Blue areas represent normal slopes (pole
facing up, N, > 0), whereas red areas correspond to overhangs (pole facing down, N, < 0). e Map of susceptibility to planar failure for a joint set oriented 350°/30°. £ Map
of susceptibility to planar failure for a joint set oriented 350°/80°. In this example, the steeper joint set results in a higher susceptibility index in the overhanging part of

the synthetic point cloud

(Bieniawski 1973, 1979; Romana 1985, 1993; Wyllie and Mah 2004)
(Fig. 4a). For normal slopes (dz > o):

=t < ap < ajj+t (6)
and
51']' < /jp (7)
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For overhanging slopes (dz < o):

(180 + cvj)—t < ap < (180 + o) + ¢

(8)

where a, is the dip direction and {3, is the slope angle, respectively,
of a given point P. N combinations are possible to form a wedge
with 7 joint sets, such that



Planar or wedge failure
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Fig. 4 a Two-dimensional representation of potentially unstable areas for planar failure according to joint set j. Nj is the normal vector (pole) to the joint j. N}, is the
normal vector to the topography at the point P. The image a is the same for wedge failure, by considering j as the intersection line between two discontinuities rather
than only a joint plane. Red shading represents the areas where a failure is possible, whereas the green shading highlights the stable part of the slope. b Two-dimensional
representation of the potential unstable areas for toppling detachment. For both planar and toppling detachments, overhangs are areas of very high rockfall susceptibility

(9)

Numerical loops are performed in the routine to verify the possi-
bility of failure of each combination of joint sets in every point of
the point cloud.

Toppling detachment The point P where a toppling failure mode
is possible must also satisfy geometric conditions for values of the
dip direction («;) and dip (/3;) of joint sets (Bieniawski 1973, 1979;
Romana 1985, 1993; Wyllie and Mah 2004) (Fig. 4b). For normal
slopes (dz > 0):

(@i +180)~t < ap < (a; +180) + ¢t (10)
and

go_ﬂiiﬁp (11)
For overhanging slopes (dz < o):

ai—t < ap < o+t (12)

where o, and 3, are the dip direction and dip, respectively, of a
given point P. As previously, we used a tolerance ¢ equal to 20° in

our case study analyses. The calculation loop is repeated for every
joint set from 1 to i.

At this point, we know the areas where a given joint set (or couple
of joints, for wedge failures) can produce a failure according to
one of the three mechanisms.

Failure susceptibility index

The previous calculations provide an indication of whether or
not a particular failure mechanism is possible. However, for
quantitative rock fall hazard analysis, we must also calculate
the susceptibility when one of those failure mechanisms is
geometrically possible (i.e., there is a positive result to one
of the calculation loops described previously for planar,
wedge, or toppling). We therefore calculated a susceptibility
index based on the average surface that every joint set (or
combinations of two joint sets in the case of wedge failure)
forms on the topography according to its spacing, trace
length, and incidence angle (Jaboyedoff et al. 1996, 2004).
The susceptibility index also depends on the steepness of
the joint set (or of the intersection line in the case of wedge
failure) and finally defines the slope areas with the most
favorable orientations for overall failure from the three mech-
anisms combined.
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Planar failure We evaluate the potential for planar failure by
calculating, with the scalar product, the incidence angle 6 between
the normal vector dp to the topography at point P, and the normal
vector D; to joint set i

0 = arccos(dpD;)

(13)

Then, we define the susceptibility to planar failures S, related to
the joint set i, in the point P, by

sin(6)

S, =A
P LT

tanf; (14)
where 0 is the angle between the normal vector to point P and the
normal vector to joint set i, L and T are respectively the average
spacing and trace length of the joint set i, and /3; is the mean slope
angle of joint set I (Fig. 3e). The calculation of S, can be standard-
ized by using a standard area, A, equal to 1 m*.

Wedge failure We evaluate the potential for wedge failure by
calculating at every point P the density of wedges (N,,) based on
the average spacing values (L; and L;) of the two joint sets, an area
A of 1 m? the angle v between the two sets, and the angle A
between the wedge axis and the pole of the topography (point P)
(Jaboyedoff et al. 1996, 2004):

cos(A)sin(7)

N, =4 L) (15)
This value of N,, is valid when the joint sets are fully persistent,
which is rarely the case. For this reason, N,, must be multiplied by
a factor p that accounts for the probability that joint sets i and j
intersect to form a wedge. To calculate p, it is necessary to know
the apparent spacing Lapp of the first joint set along the trace T of
the second joint set (Jaboyedoff et al. 1996):

Lappi — L (16)

~ siny
Ti T

=—— 7 17
P Lapp;Lapp; 07)

The susceptibility to wedge failure depends on the steepness of the
wedge axis and on the K factor. The K factor integrates the effect of
the opening of the wedge and of the angles between each joint set
and the horizontal plane (Wyllie and Mah 2004).

sina; + sina;

K=" TR (18)

sin(oz,- + aj)

where a; and q; are the angles between the horizontal plane and
the joint set i or j, respectively. Thus, in a given point P, the
susceptibility to wedge failure S, formed by the sets of joints i
and j would be

s 09)

S, =N, P

where [3;; is the plunge of the line of intersection of planes i and j
(Fig. 31).
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Toppling detachment We suggest a susceptibility index for top-
pling detachment in the normal slopes proportional to the steep-
ness of the joint set. Conversely, in the overhanging areas, the
susceptibility to toppling detachment is greater where the topog-
raphy is sub-parallel to the relevant joint set. For normal slopes
(dz > o):

_, sin(0)
Ss=A IT tan(d) (20)
and for overhanging slopes (dz < o):
A 1
*=ITtan(0) (21)

where 0 is the angle between the normal vector to point P and the
normal vector to joint set i, L and T are respectively the spacing
and the trace length of the joint set i, A is an area of 1 m? and
6 = 6-90°.

Final rockfall susceptibility

For each point of the point clouds, we can calculate the sum of the
susceptibility indexes obtained for the joint set calculation loops of
the three mechanisms. The final result S,,,, representing the best
estimation of the failure susceptibility for a given point P, is the
sum of the indexes of all the planar (S,), wedge (S,,), and toppling
(S, potential failures at that point:

Stor = Zsp + 28w + 28 (22)

Whereas this calculation provides a numerical value of suscepti-
bility, the classification of low or high susceptibility must be
analyzed relative to each individual cliff face. Further, it should
be noted that the resultant susceptibility does not identify that a
failure will occur (e.g., that the rock friction angle is less than the
slope angle for planar failure), but rather that cliff-scale rock
compartments are more or less susceptible to failure based on
their geometry alone when compared to other rock compartments
along the cliff.

Exfoliation failures

Many rock masses are susceptible to exfoliation-type joint failure,
whereby failure can occur along joints that are oriented sub-
parallel to the cliff face with only infrequent daylighting (joint
intersection) with the topographic surface. This is true at both of
the case studies investigated herein (Yosemite Valley and the Drus)
where exfoliation is common in the granitic rock masses that form
their respective steep landscapes (Bahat et al. 1999; Martel 2006,
2011; Stock et al. 2012; Leith et al. 2014; Collins and Stock 2016). We
observed that the detachment surfaces for many historical rock-
falls in Glacier Point (Yosemite Valley) were along exfoliation
joints and bounded by regional tectonic joints. Our susceptibility
index for planar failure captures exfoliation when exfoliation
joints are intersecting steep slopes or overhanging structures
(Fig. 5). The topographic points constituting an overhang will
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display a particularly high susceptibility due to the exfoliation
joint because it intersects that slope area almost perpendicularly
(e.g., Figs. 1d, 4a, and 5). Toppling susceptibility index also cap-
tures part of exfoliation failures as this index is maximal when the
joint set is parallel to the cliff face (Fig. 5). The points of the cliff
that have the same orientation as a joint set will display a high
toppling index and thus increase the overall rockfall susceptibility
for that location. However, pure exfoliation failures, developing
without the interaction with oblique tectonic joints, are difficult to
resolve before a rockfall occurs because the exfoliation joints are
essentially parallel to the cliff face and therefore most often hidden
within the cliff.

Inventory of rockfall events

To validate our methods for quantifying rockfall susceptibility, we
defined the locations of existing rockfall scars for our two study
sites: the cliff below Glacier Point in Yosemite Valley and the west
face of the Drus in the Mont-Blanc massif. For Yosemite Valley, we
have a rich inventory database of rockfalls spanning over 150 years
(Stock et al. 2013). At the Drus, Ravanel and Deline (2008) quan-
tified rockfall activity by comparison of historical photographs
over a period of about 100 years. In addition, we performed
detailed annual TLS monitoring from 2010 to 2016 on the cliffs
of Yosemite Valley and at the Drus, which detected several rockfall
events, even of very small volumes (< 0.5 m?).

Application 1: Glacier Point cliff (Yosemite Valley, California, USA)

Yosemite Valley is an east-west 11-km-long, ~ 1-km-deep valley
cutting the western slope of the central Sierra Nevada mountain
range in California, USA (Fig. 6). The glacially steepened cliffs
experience numerous rockfalls each year (Stock et al. 2013), posing

risk to the four million annual visitors to the park (Wieczorek and
Snyder 1999; Wieczorek et al. 2008; Stock et al. 2011, 2012, 2013,
2014).

Geological setting and fracturing pattern
Yosemite Valley was carved by Pleistocene glaciations into Creta-
ceous age plutons of the Sierra Nevada batholith (Huber 1987;
Bateman 1992; Calkins et al. 1985; Peck 2002). Exfoliation joints,
formed (sub) parallel to topographic surfaces, are a characteristic
feature of granitic rocks and are ubiquitous throughout the valley
(Bahat et al. 1999; Wieczorek and Snyder 1999; Wieczorek et al.
2008; Martel 2006, 2011; Stock et al. 2011, 2012; Collins and Stock
2016) (Fig. 1d). The cliff beneath Glacier Point, located in the
eastern portion of Yosemite Valley, is one of the tallest in Yosemite
(about 800 m). The Glacier Point cliff is composed of Half Dome
granodiorite in the lower part and Sentinel granodiorite in the
upper part (Calkins et al. 1985). Using the methods previously
described, we identified and characterized 16 different joint sets
at Glacier Point (Table 2).

The value of 20 is the double standard deviation. Joint sets with
numbers not shown (J1, J3, J4, etc.) do not consistently outcrop on
the north facing exposure of the cliff.

Results

Our analysis for Glacier Point highlights the complex and some-
times overhanging topography of the cliff (Fig. 7a). In analyzing
rockfall susceptibility, we colored the 3D points according to the
value of the sum for each joint set, of the planar (Fig. 7b), wedge
(Fig. 7¢), and toppling (Fig. 7d) failure susceptibility indexes.
Here, we find that the susceptibility of planar failure and
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toppling detachment are similar, but generally low, with the
index of the slope areas most likely to experience these kinds
of failure reaching o0.05. However, some slope orientations are
particularly favorable for the development of wedge failures and
thus the susceptibility index for this mechanism reaches con-
siderably higher values (up to 0.34) (Fig. 7c). We investigate
susceptibility further by plotting the numbers of points within
the point cloud where a joint set or a combination of joint sets
can lead to a failure (Fig. 8a-c) and by computing the individual
failure mode susceptibility over the point cloud (Fig. 8d-f).
Some joint sets can theoretically lead to failures, but their
spatial probability of occurrence is low, resulting in a small
susceptibility index. For example, joint set J27 forms the highest
number of points where planar failure is possible (Fig. 8a), but
because it has a medium dip angle (56°), it has a reduced
susceptibility index (Fig. 8d). In contrast, joint set J1o is ranked
third in terms of numbers of potential planar failure points (Fig.
8a) but has the greatest sum of susceptibility indexes over the
whole point cloud of the Glacier Point cliff (Fig. 8d), mostly
because joint set J1o is very steep and oriented perpendicular to
roof structures. J10 is also very persistent and represents one of
the most important joints shaping the Glacier Point cliff. Several
recent (1998 to present) rockfalls from the Glacier Point cliff
have been associated with joint set J10, which is often parallel to
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the cliff face and thus locally considered as an exfoliation joint.
The largest of these recent rockfalls associated with Jio is the
October 2008 rockfall (5663 + 36 m? Stock et al. 2011). Although
J27 and J30 have lower susceptibility values than Jio, they are
important because they furnish a surface for planar failure of
large rock masses.

With 16 joint sets, the number of theoretically possible wedges
is 120 (Eq. 9), but only some are capable of daylighting at Glacier
Point cliff, as illustrated in Fig. gb. Those that have a significant
susceptibility rating are even fewer; in particular, we note the
combinations of 12-27, 12-30, 10-12, 7-12, 2-9, and 28-30 (Fig. 8e).

The most important joint set in terms of potential toppling
detachment at the Glacier Point cliff is J31 (Fig. 8¢c). In fact, its
orientation (223/69) is the opposite of the average dip direction of
the cliff (030/75) leading to a high number of points prone to this
type of failure (Fig. 8f).

Ultimately, the final rockfall susceptibility, obtained by sum-
ming the indexes for the different mechanisms (Eq. 22), can be
compared to visible rockfall areas (in the form of rockfall scars)
and to the inventory of historical events, which is significantly
detailed in this area of Yosemite Valley (Stock et al. 2013).
Rockfall areas active over the past few decades are located in
zones determined to have relatively high susceptibility to rock-
falls (Fig. 9).



Table 2 Summary of the main joint sets detected in the cliff below Glacier Point

Joint set Dip direction (°) Spacing (m) Trace length (m)
12 089 35 20 12 140
J5 250 35 17 18 81
17 050 79 18 10 66
18 118 51 13 16 77
19 306 51 15 3 29
J10 011 85 12 4 55
Jn 155 87 10 9 31
112 119 88 19 5 19
N3 177 40 14 18 36
J16 267 80 11 13 35
17 160 58 17 17 50
127 025 56 13 7 65
128 295 74 12 9 35
129 180 8 16 1 40
130 355 49 14 6 39
131 223 69 14 10 25

lE] lE]
Normal vector Overhanging slope | Susceptibility to

orientation Normal slope planar failure

Glacier Point
apron

Susceptibility to ; Al Susceptibility to
wedge failure 3 toppling i
i : detachment

Fig. 7 Results for 2010 three-dimensional model of Glacier Point cliff in Yosemite Valley. a TLS point cloud showing overhanging areas in red. b Point cloud colored
according to the sum of the planar failure susceptibility index for all 16 predominant joint sets (see Table 2). ¢ Point cloud colored according to the sum of the wedge
failure susceptibility index for all 120 combinations of joint sets. d Point cloud colored according to the sum of the toppling detachment susceptibility index for the
detected joint sets
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Application 2: the Drus west face (Mont-Blanc, France)

The Mont-Blanc massif is a mountain range about 40 km long and
10 km wide, located at the border of France, Italy, and Switzerland.
It contains numerous sub-peaks and cliff faces, including the west
face of the Drus (Fig. 10). Numerous rockfalls occurred in the
twentieth century, and the evolution of this face is especially well
documented by historical photographs (Ravanel and Deline 2008;
Fig. 10c). During the last decade, this face was affected by several
large rockfalls, most notably in the summer of 2005 (265,000 m?
Ravanel and Deline 2008; Guérin et al. 2017) and in September
(4532 *+ 200 m?) and October (54,731 + 400 m?) of 2011 (Matasci
et al. 2015; Guérin et al. 2017) (Fig. 10b, c).

Geological setting and fracturing pattern

The Drus peaks are carved in the Mont-Blanc granitic batholith,
which was intruded into the European gneissic basement
(micaschists and gneiss) during the late Paleozoic Hercynian orog-
eny (Epard 1990; Bussy and Von Raumer 1994; Steck et al. 1999).
Subsequent tectonic phases created several very steep and persis-
tent joint sets within the rock mass. Using point clouds collected in
both September 2010 and November 2011, we identified 14 different
joint sets (Table 3) on the west face of the Drus.

Results

Rather than relating rockfall susceptibility for the entire cliff to a
long-term rockfall inventory as we did for Yosemite, we performed
temporally specific susceptibility analyses for several episodes of
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rock fall activity for the west face of the Drus. The bracketing dates
of the point clouds collected for the west face of the Drus allowed
us to perform specific “before and after” susceptibility assess-
ments of a large pillar collapse (59,300 m?®) that occurred in
September-October 2011 (Fig. 11a), i.e., we can calculate the rock-
fall susceptibility after the 2011 collapse and then compare that
result against actual rockfall events. In both cases, we found the
rockfall sources to be clearly linked to the geometrical character-
istics and mechanical behavior of the main structural features.

2010 (pre-failure) susceptibility index and subsequent large-scale failure

In 2010, the areas of highest rockfall susceptibility on the west face of
the Drus were two overhanging structures located in the middle of
the face (Fig. 11b). This relatively high ranking (about 0.45) is mainly
due to the steepest wedges J1-J3, J1-J8, and J2-J8 (Fig. 12b) that have an
intersection almost perpendicular with the two overhangs. Thus, the
base of the pillar that collapsed in 2011 (Fig. 11a) was in a particularly
unstable situation as a consequence of the sub-horizontal overhang-
ing structures and the high probability of failure of the vertical and
very persistent wedges. Other important failure mechanisms are the
wedges J1-Jg and J8-J9, as well as planar failure along J9 and toppling
detachment according to J6, J13, and Ji4 (Fig. 12).

2011 (post-failure) susceptibility index and subsequent small-scale rockfall
activity

We used the point cloud acquired in November 2011 to perform
additional susceptibility analysis following the large failures of
September-October 2011 (Fig. 11a). By comparing the scan of
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Fig. 9 Comparison between the integrated rockfall susceptibility map and the areas of rockfall activity defined in the field. a Point cloud of the rockfall susceptibility
calculated by summing the susceptibility index for planar, wedge, and toppling failure (i.e., S;,.). b GigaPan photograph used to map the visible rockfall scars, shown in
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(Stock et al. 2013), as well as photographic comparison and several repeat TLS scans between 2007 and 2013 performed as part of this study. Dates with only the year
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November 2011 with another data set collected in September 2014,
we detected 16 rockfalls, with the largest event having a volume of
132 m?* (Fig. 13a). The most important mechanisms for these

rockfalls are the same as for the computation on the 2010 point
cloud (Fig. 12), and the most susceptible parts are overhanging
structures visible in close-ups 1 and 2 of Fig. 13. Comparison with
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Fig. 10 a Setting of the Drus peak within the Mont-Blanc massif (Swisstopo). b Present day situation of the west face of the Drus with the scars of the collapses of 2005
(red dashed line) and 2011 (yellow line: September 10-11, Red line: October 29-30). ¢ Photo-comparison reconstruction of the main historical rockfalls that occurred in
the west face of the Drus (modified from Ravanel and Deline 2008)

the calculated rockfall susceptibility is coherent in most of the
cases, as displayed in the close-ups of Fig. 13c-e; in fact, these

Table 3 Summary of the characteristics of the joint sets measured with the TLS point cloud in the west face of the Drus

rockfalls were located directly above zones of high or very high
susceptibility.

Joint set Dip direction (°) Spacing (m) Trace length (m)
n 238 68 17 6 70
12 274 84 18 3 80
B3 303 79 17 7 90
14 065 27 19 7 16
J5 131 8 10 13 15
J6 106 33 22 7 12
7 029 26 18 8 8
18 176 80 19 6 40
19 286 46 17 7 16
J10 211 71 15 15 75
m 026 81 14 18 60
112 146 67 14 10 30
113 058 74 15 1 16
114 108 66 16 13 17
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Fig. 11 a TLS mesh textured with a photograph displaying the mesh to point comparison between the scans of September 2010 and November 2011. An initial rockfall
occurred in September 2011 (4532 + 200 m®) close to the base of the pillar, followed by collapse of the entire pillar between 29 and 30 of October (54,731 + 400 m*). b
Result of the susceptibility calculations on the point cloud of 2010, prior to the rockfall events. The arrows indicate two overhanging areas characterized by a particularly

high susceptibility rating and located at the base of the collapsed pillar

Discussion

Potential and limits of the susceptibility models

The methods we develop here define the cliff areas with orienta-
tions most favorable to failure. The results of this analysis are an
additional tool to address the issue of localizing the most probable
future rockfall source areas. Both in Yosemite Valley and at the
Drus, overhanging areas display the highest rockfall susceptibility
indexes, confirming the importance of more accurately analyzing
these structures (Figs. 9 and 13). At the Drus, reconstruction of the
main historical rockfalls (Fig. 10c) supports these results, demon-
strating that rockfall activity propagated toward the top of the face,
with successive failures between overhanging structures (Ravanel
and Deline 2008).

x1¢* Planar failure susceptibility

Wedge failure susceptibility x10*

For both the Glacier Point cliff and the west face of the Drus,
our analyses show that most of the inventoried rockfall events
occurred in zones with a relatively high rockfall susceptibility
index. Of 31 rockfalls documented at these two areas in the past
20 years, approximately 90% of the events took place in relatively
high or very high susceptibility areas and only 10% in moderate or
low susceptibility areas (Fig. 14).

The values of susceptibility index depend on the characteristics
of the discontinuities affecting the studied rock mass, and thus, the
definition of low or high susceptibility is relative to the study site.
The application sites used in this study have similar rock types and
fracturing patterns resulting in comparable, but not directly sim-
ilar, ranges of rockfall susceptibility. The spatial distribution of the
susceptibility index must be interpreted with respect to the values
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Fig. 12 Results of susceptibility calculations for a planar failure, b wedge failure, and ¢ toppling detachment mechanism at the west face of the Drus. Joint sets J1-J3, J1-
J8, and J2-J8 are particularly susceptible to wedge failure and likely played a major role in the destabilization that resulted in the large failures in September and October
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points difference between LiDAR scans. b Point cloud showing the computed total rockfall susceptibility (S,,,). c—e The close-ups 1, 2, and 3 (color bar and the scale are
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in the immediate vicinity of the area under investigation and must
be compared to the local cliff morphology to assess the dimensions
of potential future rockfalls. For instance, a pillar delimited on the
sides by vertical joints and at the base by a sub-horizontal joint
should be considered as a complete unstable rock mass, even if the
points in the vertical facets have a lower susceptibility rating than
those in the overhanging part. In fact, it is difficult to reliably
determine a priori, at the cliff scale, if only parts of such an
unstable area will fall or if it will collapse in a single large rockfall
event. To evaluate the precise stability conditions of single com-
partments, it is necessary to perform detailed field investigations
and geomechanical stability modeling (Paronuzzi and Serafini
2009; Tsesarsky and Hatzor 2009; Brideau et al. 2011). Our aim in
developing this methodology is to define the zones where rockfalls
are particularly likely to detach in order to direct the subsequent
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detailed analysis, such as site-specific run-out trajectory simula-
tions (Frattini et al. 2008; Gigli et al. 2012).

Starting with such a rockfall source detection, the entire
rockfall hazard assessment is both more effective and more
reliable when compared to traditional approaches that might
consider all steep slopes as equivalent source areas. Fanti et al.
(2013) and Gigli et al. (2012) greatly improved the kinematic
analysis in steep outcrops. With our work, we defined suscepti-
bility indexes to enhance the detection of the most rockfall
prone areas among the vertical and overhanging cliff areas
(Figs. 9 and 13). In general, the volumes located above over-
hanging planes are a priori less stable because of the lack of
support at the base. When these overhanging structures also
have high susceptibility index, the upper rock masses should be
considered the most hazardous portions of the cliff, as they
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have a great probability of being detached at the base by day-
lighting joints or wedges. Thus, our methodology provides a
quantitative framework for characterizing these structures.

Comparison of application sites

Although both of our study sites are located in granitic rocks, they
have quite distinctive fracturing patterns due to contrasts in pluton
ages and tectonic histories. The main structural difference is that, in
the Mont-Blanc granite, exfoliation joints are much less frequent. This
could be related to the tectonic deformations that it experienced since
emplacement (330-320 Ma) and, in particular, during the Alpine
orogeny (Bussy and Von Raumer 1994). In contrast, the Cretaceous
plutons of the Sierra Nevada underwent less tectonic deformation
since emplacement, cooling, and exhumation (Molnar et al. 2007).
Moreover, the Drus is situated in a high alpine environment, implying
the presence of permafrost, with related weathering, intermittent fluid
flow, and ice wedging along joints (Boeckli et al. 2012; Ravanel and
Deline 2008; Ravanel et al. 2010; Fischer et al. 2010; Hasler et al. 2012;
Krautblatter et al. 2013; Matasci et al. 2015). Finally, the morphologies
of the faces are very different because of the joint sets with large trace
length. At the Drus, the pervasive structures are the steep wedges that
represent the main morphological feature of the west face. At Glacier
Point, the most persistent joints are not very steep and dip in opposite
directions, perpendicular to the main cliff orientation. For example,
Jio is very important for shaping Glacier Point cliff, as the mean
orientation of the cliff is sub-parallel to this discontinuity.

Exfoliation failures

Rockfalls in Yosemite Valley are often linked to the propagation of
shallow exfoliation joints that are, by definition, parallel to the
topography (Wieczorek and Snyder 1999; Stock et al. 2011, 2012). As
such, exfoliation joints within a rock mass are hard to resolve with
remote sensing methods. As indicated previously, we include the
contribution of exfoliation joints to the rockfall susceptibility via the
calculation of the planar and toppling susceptibility indexes. The
potential for exfoliation failures is included in the toppling suscep-
tibility whenever steep and overhanging slope areas are close to
parallel to the regarded joint (Fig. 5). In these cases, the failure is
likely to occur in tension. Planar index captures exfoliation where the

joint has an oblique intersection with the slope (overhangs; Fig. 5).
Where the slope angle is moderate and parallel to the exfoliation
joint, the potential of exfoliation failure is probably underestimated
because no daylighting of joints occurs and they are therefore not
able to be measured for inclusion into the planar susceptibility
calculations. The lower portion of the Glacier Point cliff represents
a setting where exfoliation joints are parallel to the topographic
surface with little to no daylighting or surface expression (Figs. 6b
and gb). Exfoliation joints do exist in this part of the cliff, as they are
visible in a few places, and were detected during geophysical inves-
tigations in the area (Brody et al. 2015). However, because of the lack
of joint expression at the surface, we calculated relatively low rockfall
susceptibility in this location (Fig. 9). The calculated low susceptibil-
ity at this location may in fact accurately represent the situation, as
the low-angle slope and lack of daylighting joints may not allow rock
masses to mobilize. In fact, the lower portions of Glacier Point retain
glacial polish, indicating that very few rockfalls occurred there since
glacial retreat circa 15,000 years ago (Fig. 9). Similarly, the inventory
database of Yosemite rockfalls contains relatively few rockfalls from
this area (Stock et al. 2013).

At the Rhombus Wall, located across the valley from Glacier
Point (see Fig. 6a), a specific area experienced several progres-
sive rockfalls in 2009 and 2010 that detached along exfoliation
joints (Stock et al. 2012). In that area, we used terrestrial LIDAR
data to measure the spacing between the exfoliation joints.
Preliminary results show that the frequency of exfoliation joints
is considerably higher in the area of intense rockfall activity,
compared to the rest of the cliff. Although the frequency of
joints does not provide any indication of the probable failure
mechanism, we note that a cliff area with a high frequency of
exfoliation joints has a higher probability to produce rockfalls
by providing a multitude of potential failure planes that can
subsequently slide, topple, or fall. Including additional aspects
of exfoliation failures into rockfall susceptibility analyses is a
subject for future research.

Conclusions

Application of TLS and high-resolution photographic technologies
allowed detailed three-dimensional assessment of the fracturing
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pattern of vertical and overhanging cliffs in two distinct rockfall-
prone areas. We developed a computation routine of the kinematic
failures on terrestrial LIDAR point clouds to assess rockfall sus-
ceptibility at the cliff scale. Equations define a susceptibility index
for each failure mechanism, according to information accumulat-
ed during long-term monitoring of rockfall processes. The suscep-
tibility models obtained for the cliff below Glacier Point (Yosemite
Valley) and the west face of the Drus (Mont-Blanc) show a good
correspondence with past rockfall sources, demonstrating the va-
lidity of the approach. Overhanging areas are found to be impor-
tant areas requiring detailed study in order to quantify rockfall
susceptibility. In Yosemite Valley, the frequency of exfoliation
joints plays a central role in the destabilization process contribut-
ing to small and medium-sized rockfalls, which are the most
common. Most of the effect of exfoliation on rockfall susceptibility
is captured by our planar and toppling susceptibility indexes, but
assessment of the susceptibility to exfoliation failures remains
challenging, in particular where exfoliation joints have no external
expression; additional investigations are needed to improve the
modeling of this failure mechanism.

The methods we present here for geometrically analyzing in
three dimensions the main failure mechanisms potentially acting
on a cliff prove to be effective for identifying the most probable
future rockfall sources. Calculating the susceptibility of failure can
define the points of initiation for future rockfalls. However, tem-
poral forecasting of areas that will fall in the future is still a
formidable research challenge. At a minimum, additional
geomechanical investigations are needed to define the stability
conditions of a specific area. Concerning timing aspects, future
research might pursue the improvement of site-specific invento-
ries in order to improve the correlations between rockfall volume
and frequency distributions (Dussauge et al. 2003; Guzzetti et al.
2003; Brunetti et al. 2009; Barlow et al. 2012). In both Yosemite
Valley and in the Mont-Blanc massif, large efforts have been
directed toward this problem, in particular during the past 10 years,
with the support of ground based LiDAR (Stock et al. 2012, 2013;
Zimmer et al. 2012; Rabatel et al. 2008; Ravanel and Deline 2008,
2011). Coupling susceptibility analysis to frequency distributions of
potential rockfall volumes could be the key to improve the effec-
tiveness and reliability of rockfall hazard assessments and to gain
new insights on the evolution of steep rocky landscapes.
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