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SUMMARY

Peak rainfalls and peak runoff rates per unit area are comparable over a worldwide spectrum of climates. However,
while the magnitude of the external contribution of energy or force in diverse regions is similar, the impact on the
landscape varies markedly between regions. Absolute magnitudes of climatic events and absolute time intervals between
such events do not provide satisfactory measures of the geomorphic effectiveness of events of different magnitudes
and recurrence intervals. Although geomorphic processes are driven by complex sets of interrelated climatic, topo-
graphic, lithologic, and biologic factors, the work done by individual extreme events can be scaled as a ratio to
mean annual erosion and the effectiveness of such events in forming landscape features can be related to the rate
of recovery of channel form or mass wasting scars following alteration by the extreme event. Thus, a time scale
for effectiveness may relate the recurrence interval of an event to the time required for a landform to recover the
form existing prior to the event.

River channels in temperate regions widened by floods of recurrence intervals from 50 to more than 200 years
may regain their original width in matters of months or years. In semi-arid regions, recovery of channel form depends
not only upon flows but upon climatic determinants of the growth of bottomland vegetation resulting in variable
rates of recovery, on the order of decades, depending upon coincidence of average flows and strengthened vegetation.
In truly arid regions the absence of vegetation and flow precludes recovery and the width of channels increases
in drainage areas up to 100km? but remains relatively constant at larger drainage areas.

Area as well as time controls the effectiveness of specific events inasmuch as the likelihood of simultaneous peak
discharges or rainfalls and large areas is less, particularly in arid regions where events spanning areas of more than
several thousand km? are extremely rare if experienced at all. To some extent a decrease in area in a humid region
is comparable with a regional change from humid toward more arid climate reflected in the increase in importance
of episodic as contrasted with more continuous processes. Exceedingly rare floods of extreme magnitudes, estimated
recurrence intervals of 500 years or longer, may exceed thresholds of competence otherwise unattainable in the ‘normal’
record resulting in ‘irreparable’ transformations of valley landforms.

Denudation of hillslopes by mass wasting during relatively rare events can also be related to mean rates of denudation
and to recovery of hillslope surfaces after scarring by different kinds of landslides. Measured recovery times described
in the literature vary from less than a decade for some tropical regions to decades or more in temperate regions.
Recurrence intervals of high magnitude storms which trigger mass wasting range from 1 to 2 years in some tropical
areas, to 3 or 4 per hundred years in some areas of seasonal rainfall and to 100 or more years in some temperate
regions. The effectiveness of climatic events on both hillslopes and rivers is not separable from gradient, lithology
or other variables which control both thresholds of activity and recovery rate.
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CLIMATE AND WATERSHED PROCESSES

The geomorphic importance of a given event is governed not only by the absolute magnitude of the
force or energy which it brings to bear on the landscape, but also by the frequency with which it
recurs, the processes during intervening intervals between such recurrences, and the work performed
during such intervening intervals. The combined effect of all events and processes constitutes the assem-
blage of climatically controlled processes upon which the concepts of effective force and morphogenetic
regions rest. Because of the variety of possible combinations of processes and earth materials similar
or convergent landforms may result from different combinations or sequences of processes acting on
different materials. As Birot (1968) noted, the interrelationship of the many geomorphic processes consti-
tuting a climatic geomorphology is exquisitely complex and unlikely to be described by any simple
quantitative relationship. At the same time, attempts at understanding such relationships underlie
explanations of geomorphic evolution including responses to climatic change, and current attempts
to predict the environmental impacts of intentional and inadvertent alterations of the environment
by man. '

While recognizing that fundamental factors such as topography, structure, and lithology must enter
into the comprehensive explanation of the form of any particular landscape, this paper attempts to
draw together some illustrative examples to suggest how the ‘relative’ timing and ‘relative’ magnitude
of landforming events may affect selected landforms in different climatic regions. Both time and spatial
scales enter into the determination of effectiveness. In dealing with regions as a whole, it is often con-
venient to assume that an event recorded at a point in space could or will, over time, occur elsewhere
in the region. Such an assumption of regional similarities permits extrapolation of the time or frequency
characteristics of a long-term record at one point to the region as a whole; a concept contained in
the ergodic theorem which assumes that ‘an infinitely long record at one point has the same statistical
properties as a record taken over an infinite number of spatial ensembles at a particular point in
time’ (Harvey (1968, p. 77)). It is also true, however, that the importance of a given event or sequence
of events in moulding the landscape will vary with the spatial distribution of the event, such as a
rainstorm, and with the scale or size of the drainage basin and landforms upon which it acts. The
ergodic assumption is implicit in the generalizations suggested here, and attention is drawn to the
importance of the spatial scale.

Definition of effectiveness

In attempting to evaluate the effectiveness of climatic elements in geomorphology, a distinction has
been made between work performed and sculpture of the landscape (Wolman and Miller (1960), Thorn-
bury (1954)). Work has customarily been measured in terms of the quantity of material transported
over a given distance in a given period of time using data on the clastic and dissolved load in rivers,
or products of mass wasting or sheet wash from hillslopes (Rapp (1960)).

Movement of large quantities of material from hillslopes is not necessarily synonymous, for example,
with incision of gullies on the same landscape. Rare events of large magnitude may create new gullies
during short duration downpours, but over long periods of time the total quantity of sediment removed
from the hillslope may be considerably greater than the amount removed in cutting the gullies. We
are concerned here primarily with formative events, those occurrences which shape the landscape and
in some cases with the net denudation of specific meteorological events.

Effectiveness then is here defined in terms of the ability of an event or combination of events to
affect the shape or form of the landscape. This landforming result is only partly related to the mass
of material removed. Because the form of many features of the landscape is controlled by both destructive
and constructive processes, the effectiveness of a destructive event depends upon the force exerted,
the return period of the event, and upon the magnitude of the constructive or restorative processes
which occur during the intervening intervals. That is, the importance of events which sculpture the
landscape is measured, in part, relative to the processes which tend to restore the surface of the landscape
to the condition existing before the new landforms were created. In some instances, when an event
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192 M. GORDON WOLMAN AND RAN GERSON

‘background’ rainfall, and flow events cannot be readily generalized. However, rainfall cells are also
well documented in tropical regions (Temple and Rapp (1972, p. 164)). Similarly it is known that peak
discharge per square mile decreases with increasing drainage area and a similar inverse relationship
exists between drainage area and the ratio of a high magnitude flow event to mean annual flood (Kuiper
(1957)).

There is a distinct difference in the effectiveness of diverse rainfall events of similar frequency on
hillslopes and on adjacent low order streams both in arid and humid climates. In humid regions, the
headwaters of larger perennial streams are often ephemeral and first order tributaries approaching a
divide tend to dry up. Frequency of surface runoff is very low on hillslopes and in first order streams
compared to higher order ones. In arid and semi-arid zones, frequency of flow may be higher on
hillslopes than in adjacent streams, as much of the potential overland flow percolates into accumulations
of colluvium downslope and into sediments in the channel bed (Yair and Klein (1973), Yair (1972)).
Over larger areas, however, as one moves downstream in arid watersheds, frequency of flows may
increase, as illustrated by Diskin and Lane (1972) for southeastern Arizona where, on the average,
twelve flow events per rainy season were experienced on 100 km? catchments, as opposed to six events

for 2-5 km? watersheds.

Partial area activity

Partial area activity, both in process and change of form, is characteristic of most climatically induced
events in watersheds under all climates. The more humid the climate, the higher the degree of syn-
chronous activity we should expect for a watershed, be it small or large. In small drainage basins
in both humid and arid areas during moderate rainfall events, the areas contributing runoff or sediment
are close to channels (Dunne and Black (1970), Artega and Ranz (1973), Yair and Lavee (1974)). During
events of higher magnitude, the contributing area becomes progressively larger. The higher the magnitude
of an event, the more integrated are the processes affecting transport and landforms.

On larger watersheds (tens to thousands of km? in area), rainfall cell size, spottiness of occurrence
and intensity become most important. Both the space effectively covered by a single storm and the
synchroneity of rainfall occurrence decrease with aridity. In arid zones, integration of drainage systems
occurs mainly during extremely rare intensive events covering the drainage basin, as in Tunisia in
1969 (Clarke (1973)). In contrast, as a rule generalized rainfall over larger areas in humid regions is
not confined to rare events, but covers the spectrum from low precipitation to high and sustained
precipitation over large areas. In neither case does it follow that the integration and continuity of
landscape elements, such as channel or hillslope forms, result from a single major event. This is most
obviously seen in the process of channel incision through headcut retreat. Various facets of the watershed
have different thresholds of erosion and these may or may not be exceeded during a single event,
although each may require a ‘large’ event to trigger a response. However, it remains difficult to point
to threshold values of rainfall intensity and duration for an integrated activity on even a very small
watershed. An intensive storm of February 1975 which generated several flood flows in the Nahal
Yael Experimental Watershed, southern Israel, is an example. The drainage area is 07 km? and mean
annual precipitation is 25 mm. The storm yielded 80 mm of rainfall in less than 12 hours, but still
no synchroneity of flow nor integrated activity could be observed; different hillslopes and channel tribu-
taries flowed at different times. Tricart (1960) has referred to discontinuities of sediment movement
in streams, in all likelihood, the integrated drainage net represents the result of a very large assemblage
of events discontinuous in time and space.

Similarities and differences in stream flows in different climates

It is well known that mean annual stream flow increases progressively with drainage area in humid
regions (Figure 1). Although discharge per unit area is less, many streams in subhumid to semi-arid
areas such as parts of Colorado and California show a similar increase (Figure 1). While mean annual
flow in ephemeral streams in California also increases downstream, the rate of increase is considerably
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Figure 2. Relation between maximum discharge and drainage area in arid, semi-arid, subhumid and humid regions (sources
of data: Creager et al. (1944), Dalrymple (1964), Jarvis (1942), Schick (1968), Inbar (1972), Gerson (1972), TVA (1961), Matthai
(1969), Aldridge (1970), Rostvedt et al. (1970), Glancy and Harmsen (1975), Matthai (1977), Thomas (1973)

Differences in maximum runoff from a single severe storm in different physiographic settings may
also be insignificant. Confirming the adage that floods are caused by too much rain, yields in the
Appalachian Valley and Ridge, piedmont and coastal plain provinces during Hurricane Agnes in June,
1972, are similar for a given drainage area (Figure 3).

Envelope curves such as those in Figures 2 and 3 mask or encompass a multitude of variations.
At the same time, the marked similarity of maximum discharges throughout the world leads to specula-
tion regarding the way in which river channel processes in these markedly different regions respond
to high magnitude events of rare frequency and to ‘normal’ day to day events. While rainfall intensities
and maximum discharges are quite similar in different regions, their effectiveness as formative agents
on channels and hillslopes is not.

RIVER CHANNELS

The notion of equilibrium in river channels is based on the assumption that over a period of time
the net effect of a variable climatic regime will produce a river channel of a given size and shape
which is termed to be in adjustment with the climatically controlled runoff, sediment and vegetation




.
<

a o g pEo s 95§ 38ug 3 > pr )
Q = o 8 ~ 3B, z
< B a M —~.n O < v o =, e N.,O » < <
g 2 o = - » = —_ 3 = <
g e Q o o9 = =] aa — <4 <
m, w &82%82 = -5~ 27 e 4 © °
== o = 5 £ B g
588 S28:5S B8 g6
3 & o o walV e O g < =] ™
2
102 0 T
8 8 1 a
6 6
‘J ) " A
4 O
H
L ]
H -~ 2 A
]
w 2 l% E | A
o ~ O
E - =
A o 5
e 2 w0 2
= 10 M ] ~
@ 8 " 8 =
g i e 6 A Z
- o m
e
o | a0 A m m
E 4 E 4 <
2 ] x m
13 o
E = @
: 2
$ A
= 2 o
? Q
&
" )
° £
! N . B
8 2 4 6 81 2 4 6 8 v? 1 2 4 6 8V 2 4 6 B O m
Drainage Area, km Coastal Plain m Drainage Area km Coastal Plain ® m
Piedmont A Piedmont A e

Appalachians (o]

Figure 3. Maximum discharge in relation to drainage area in three different physiographic provinces for a 200-year storm in
June, 1972, in the Appalachian region of Maryland and Pennsylvania (source of data: Taylor (1972))

Sel




196 M. GORDON WOLMAN AND RAN GERSON

within a given geological setting. All definitions recognize that both the processes and specific forms
represent averages and that the characteristics which define equilibrium must be measured ‘over a period
of years’, in Mackin’s (1948) phrase, to allow for short-term variations. The ‘equilibrium’ of a stream
at a given point will, over time, fluctuate around a mean. The effect of climatic change is discernible
only when a trend in the width, or in any other descriptive parameter can be detected, or when a
‘new’ form is maintained for a sufficient period of time to permit distinction between the previous
and the newly established values.

Observations of the response of river channels in different climates and flow regimes to floods of
different magnitude indicate differences in both the significance of a flood of a given magnitude on
the characteristics of the channel and on the recovery period. Logic suggests that if the rate of revegetation
in a given region, primarily dependent on moisture, is rapid, then regardless of the destruction of
the river channel wrought by individual floods, assuming a supply of sediments, one should expect
relatively rapid recovery of vegetation and hence reconstruction of channel characteristics prevailing
prior to the high-magnitude event. In contrast, in desert regions where vegetation is rare and growth
minimal, destructive floods should essentially produce nearly irreparable and hence progressive changes.
Several illustrations support this generalization.

During Hurricane Agnes the channel of the Patuxent River, Maryland, was widened in places by
many metres (Gupta and Fox (1974)). Expressed in terms of per cent change in width, values range
from 10 to 40 per cent. Observations made at a number of locations along the Patuxent River prior
to and following three floods of roughly 200-year, 100-year, and 50-year recurrence intervals indicated
that in this region of roughly 1,000 mm of precipitation and a mean annual-flow of 0-011 m®/km?
(1 cfs per square mile), vegetation began to be re-established within weeks following destructive floods.
The combination of modest increases in discharge accompanied by higher concentrations of fine-grained
sediment, and deposition of sediments on bars and near banks exposed during preceding floods initiated
reformation of channel width and form. In straight reaches Costa (1974) noted that increases in width
produced by floodwaters were not wholly compensated for by immediate deposition. It took more
than 12 months to recover width to pre-flood dimensions. Reformation was more rapid, about six
months, in somewhat sinuous channels. Present observations of channels in the Piedmond, Mid-Atlantic
region, suggest that channels will be restored to former character in a matter of months to perhaps
10 years following disturbance by major floods. This response is shown in Figure 4 where the mean
and variations in width along the Patuxent River are plotted along with the magnitude of the change
in width created at selected localities during Hurricane Agnes.

In a mountain region, central Appalachians, Hack and Goodlett (1960) noted that channels in small
valleys, 0-25-25km? of drainage area, widened some 300-400 per cent in a single flood, generated
by a high magnitude rainstorm (recurrence interval approximately 100 years) in 1949. Within a period
of several years, healing of channels was underway, with forest vegetation recolonizing floodplains and
channel bars.

Baisman Run, at a drainage area of 40 km?, shows a similar response to that observed in the Patuxent
River (Figure 4) and in Western Run (Costa (1974)). Floods of sufficient magnitude to erode the channel
banks are experienced on the order of once every 2-5 years in this small Piedmont stream. Channel
width is on the order of 3-7m. Mapping of the vegetation on channel bars and successive measures
of channel width indicate that revegetation and deposition of sediment cause the channel to narrow
within a period of 1-8 years following destructive floods and movement of gravel.

In contrast to the larger rivers, however, channel processes in Baisman Run are truly episodic. During
the greater part of the year the low but perennial flow is insufficient to rework the coarse cobbles
found on the bed of the channel. While at least 50 per cent of total transport from the basin is in
solution (Cleaves et al. (1970)), channel form is entirely dependent on intermittent high flows. Observa-
tions over a period of 5 years revealed that, on the average, approximately 14 ‘events’ per year are
capable of transporting the gravels and sands found on the bed of the channel. At a drainage area
of 0-4km? (100 acres) each event such as a summer thunderstorm may range in duration from a few
minutes to 1 hour. The cumulative time or duration of flows sufficient to modify the bed of the channel

Figure 4. Sequ
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is approximately 7-10 hours per year or about 0-1 per cent of the time. In this sense, less frequent
events are more significant in modifying the smaller channel than the larger streams within the same
region. However, the dense forest vegetation coupled with the ample supply of moisture permits revege-
tation and recovery at a rapid rate in both the large and small streams.

In contrast to the reasonably stable response of a river in a humid environment, Schumm and Lichty
(1963) described variations in width of the Cimarron River in a semi-arid region over a period of
years (Figure 4). They conclude that the width of the river narrows during relatively wet periods when
vegetation is established in the absence of major floods. However, if a major destructive flood follows
upon a period of dry years, when vegetation is reduced on the channel margins, channel width is
greatly increased. During the period of dry years vegetation does not become established on the channel
margins and the channel width remains large. A decrease in width takes place during wet years when
vegetation becomes established and sediments are trapped by the vegetation. Wolman (personal observa-
tion) has observed a similar sequence of channel filling and narrowing with progressive increase in
rainfall and runoff in small channels in Oklahoma. Sequential changes in the width of the Gila River
in semi-arid Arizona also show fluctuations similar to those in the Cimarron. Burkham (1972) concluded
that widening was associated with major floods carrying relatively little sediment and narrowing and
floodplain reconstruction occurred during periods of low floods carrying higher sediment loads. Roughly
45 years intervened between the advent of two successive floods which widened the channel from several
hundred feet (60-100m) to 2,000 feet (610 m) with intervening periods of widening and contraction.
(See Stevens et al. (1975), who suggest that the Gila River history is evidence of non-equilibrium.)

At the opposite extreme from the humid tropics and temperate regions, in the desert rainfall and
runoff may measure no more than a trace in a period of years. However, very large rainfall and runoff
measured in terms of depth per unit time or discharge per square mile in desert regions are comparable
to those observed in more humid areas (Figure 2). Desert rainfall and runoff, however, are not distributed
uniformly over large areas, and hence in most instances local, high intensity storms produce run-off
which may be lost into stream channels as flows move downstream in dry channels (Schumm and
Hadley (1961), Osborn and Laursen (1973)). Thus an entire large drainage basin rarely, if ever, experiences
runoff from the same meteorological events as is the case in snow melt flooding or during some major
tropical storms in humid regions.

In the absence of moisture and vegetation, flood discharges which erode the bed and banks of
channels in arid regions leave a virtually permanent imprint on the landscape, unless perhaps altered
by aeolian action. Both the episodic character of runoff and the absence of intervening periods of
moisture sufficient to promote dense vegetation prevent the channels from being ‘restored’ to conditions
which may have existed prior to the flood event. This succession of changes, because of the long period
of time involved, cannot be documented at any one place. However, the major floods in Tunisia (Clarke
(1973), Stuckmann (1969)) widened channels in small watersheds as much as 100-400 per cent and
in larger ones 30-60 per cent. Observations by Gerson in the Sinai Desert in the Middle East have
similarly shown widening of as much as 100 per cent during individual storms.

In humid and subhumid regions, the rate of increase in average bankfull width with increase in
catchment area is almost constant (Figure 5). Temporary and local widening by high magnitude floods
does not change the pattern, from which we conclude that restoration of channel width after perturba-
tions is relatively rapid in humid regions. Measurements of width only are used because data for other
variables are unavailable for desert regions. A different trend is observed in arid watersheds; the rate
of increase of width is higher than in humid regions in small watersheds up to a drainage area of
100 km?2. In larger areas, channel width remains almost constant. This may be attributed to several
factors acting alone or in combinations.

1. Effective storm sizes are not large—10-100 km>—and simultaneous runoff from a larger drainage
area is only rarely achieved in arid zones.

2. Channels may be widened by extreme flows until they are wide enough to accommodate the
largest available discharges.




i g s =+ - Pt T s UL e YO e P pie = o= 2 o @ =~ & B2 23 »
S % SEFESEy [ %ZgooER 8ofEa8sBefSFS orEEESEa s EOY
8 EB WL 2 8 23 2 8B & o = £a e s
= = S & o =) o =z 8 = = =. = x O 5 < =
2 o © =3 e BOBnBOJSB & 8 3 o =R o bPo s OE 50 20 g
a [N BlOSSM Sm) uI.Bu Jmlu.d v.h.qBSanO S P = a0 5 AA.oS..D
© — SJU..J..uv o -2 Ng &2 & WI. nqmm.l.U.OMﬂ .I.“GSGME.JHMD..N. =
=4 %) g0 b= = & =R AR e R @ = e o aq 0o = 2 50 = @ o
o = < Q ° = SISO TR =S IR P B8 P ERS 5 & o2 < 25 s . 3
S g ® 323 @ 2R =0 P =0 23208 B22E2as=s88B8 .52003 ¢ =
5 ® SoBZ88y 22728Fc8c 98R3LFTZRESEZRRSEFYSRss822 0RE
) o — 0" o .
L e et - g — "W .
&
! x
. =
3
° *
——— e o T a
E k- Shinhe =
E -nll\..bbl\\\\\ =
z St . | >
8 - ¥ I =
S > | w1
- V4 ! =
2 / wUMID ———— Cestral Appaiachisas . z
¥ \-\ . Appalachions snd Piomend O ]
b} ./ Seuth Alasks ® W
- 7 Mississippi ® m
m / Amaren ® m
: e SUBHUMID, cobt .. Alborts * =
R ot - SEMI ARID ... Contral New Mexico . =
P = ARID ———  Desth Valley avew 8
. - \\\\\ EXTREMELY ARID ———  Mt. Sdem (Shales) o m
\\\\ a TT T T Timea, Seathera Negev [] @)
\u\\v\ Nogev ond Sinai ° H
rWQ“J\WjJ — [ N E B e A O O S S T T°TTrIrT T T TTTTT T T T T T 7TT1T T T T T TTTT T T T T TTT .M T T LA _W T T T T rITT H
- 5 L 5 1 5 »' 5 w 5 » 5 " 5 »’ 5 »* 5 107 m
DRAINAGE AREA, km? %
<

Figure 5. Change in channel bankfull width with increasing drainage area showing progressive increase in humid and subhumid

regions, high rates of increase in headwaters and flattening as drainage area further increases in arid regions. Semi-arid channels

appear to be intermediate between the rates typical to humid and arid ones. (Sources of data: Central Appalachians—Hack

and Goodlett (1960), Appalachian and Piedmont—Wolman (1955), South Alaska—Emmett (1973), Alberta—Kellerhals et al (1972)
Central New Mexico—Leopold and Miller (1956), Miller (1958)

>

661
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3. As channels—typically braided—grow wider, the probability of bank erosion by low flow decreases,
and the significance of such flows decreases with time.

4. No recovery of width takes place in truly arid regions where vegetation is absent.

5. There may be a transmission loss as the available water sinks into the channel sediments and
discharge values diminish or increase at a slower rate.

Figure 5 also indicates that channel width is highly variable at any given drainage area. The shape
of the curve for the arid region is taken to be representative, not solely of an increased width with
drainage area, but of the progressive increase of width with time at any given location. This relationship
is suggested schematically in the bottom sketch in Figure 4 where width is shown to increase progress-
ively with time at a slower rate as width becomes large. Higher rates of loss of water in infiltration
into the widening channel bed may contribute to the slower widening.

The one example available from a semi-arid watershed falls with channels in humid regions at a
small drainage area, and with those in arid regions at larger drainage areas (dotted line in Figure 5).
The arid zone channels may often be wider than ones in humid regions at the same drainage area.
This ‘accumulative width’ is in fact larger up to drainage areas of about 10° km?; however, in humid
regions the width of channels draining still larger areas appears to be greatest. This, of course, is
in part due to the fact that the world’s largest rivers increase in flow downstream.

The effect of lithology in arid zones may change characteristics otherwise dictated by climate. In
desert watersheds underlain by shale, surface lithology may transform channel behaviour from that
of an arid stream into a humid one. Mt. Sdom, at the Dead Sea, provides a striking example. Although
in an extremely arid region receiving only 50 mm/year of precipitation the correlation of width and
drainage area (lower line of Figure 5) is similar to that in humid environments. The cause appears
to lie in the imperviousness of the terrain and associated dense drainage net developed on the shales
which makes them more ‘humid’ hydrologically.

In terms of channel form, the effectiveness of an event of a given absolute magnitude and recurrence
interval becomes progressively less as one moves from the humid to the arid region. The effect is
the same in moving from large to small watersheds. A similar analogue of climate and size is evident
in the relative proportions of clastic and dissolved load carried by rivers (Leopold et al. (1964)): the
proportion of clastics increases with relative aridity and in smaller drainage areas. Effectiveness declines,
not because of the magnitude or force of events, but rather because of the recuperative capacity of
the channel which depends upon the availability of moisture and of vegetation.

T hresholds: non-recovery

The impact of a number of ‘catastrophic’ floods has been documented in the past several decades.
Headwater tributaries of the Vistula River in Poland scoured bedrock up to 1-5m during a flood
of 100 m3/s from an area of 53-4km?”. During intervening periods channel pools and sediment banks
are created by lesser flows, but the erosive work of the major event is not obliterated (Brykowicz
et al. (1973)). Floods on the Guil River (Tricart (1960)) in the Alps in June 1957, (1000 m?3/s) with
an estimated recurrence interval of 500 years or more completely reworked sediments and valley hill-
slopes not known to have been altered in more than 300 years of historical record, and perhaps not
since waning of the Pleistocene. Tricart (1961, p. 142) notes that mountainous valley streams have
essentially three sets of alluvial landforms; the major season channel of regularly reworked alluvial
gravels, a major channel and associated vegetated bottomland reworked perhaps every 30-50 years,
and higher surfaces, levées, and valley walls modified by only rare truly catastrophic events. Recent
floods on the Big Thompson River in the Front Range of the Colorado River (300 mm of rainfall
in 13 hours, estimated peak discharge 883 m?3/s from about 155 km?, estimated recurrence interval 500
years) abraded canyon walls and completely reworked valley bottom deposits (U.S. Geological Survey
(1977)). Coffee Creek in the Trinity Mountains, California, reworked glacial and other alluvial deposits
during a rare flood altering all of the valley bottom topography (Stewart and LaMarche (1967), see
also Helley and LaMarche (1973)).
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202 M. GORDON WOLMAN AND RAN GERSON

Hillslope failure

Three conditions are customarily prerequisites for sharp thresholds of hillslope failure in consolidated
rocks: availability of a continuous debris mantle, steep hillslopes, and intensive rainfall (or rapid snow
melting). These are most commonly found in humid montane environments. In such regions, the effective-
ness of a single event—an intensive rainstorm—in changing a landform and in denuding large amounts
of material, is likely to be highest. Such events shape both recoverable and irreversible landforms,
such as slide or avalanche scars, which may develop into first order valleys upon gullying. Rapid mass
wasting also occurs in semi-arid regions, but, as Blong and Dunkerley (1976) points out, the combination
of vegetation, meteorology, and lithology which controls the rate and timing of movement may be
quite complex. In arid landscapes, steeper slopes and intensive storms cannot compensate for slow
rates of rock decomposition and ‘wet failure’ is rare except on shale and debris flows on talus slopes.

The effectiveness of these episodic climatic events in eroding hillslopes may be estimated in part
by the relative denudation they produce. Available data for different climatic regions on the ratio of
denudation during individual events of different return periods to mean annual denudation (Figure 7)
suggests several tentative conclusions.

1. The relative denudation of a major storm in wet-tropical montane landscapes is close to the mean
annual denudation, but an event of such high magnitude may recur almost every year.

2. A rare event in an arid environment may denude many times the mean annual amount of material.

3. The ratio of instantaneous to annual denudation does not vary systematically with climate. The
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order channels are used here to illustrate some relationships betweeen the relative landforming effective-
ness of large and rare events as opposed to intervening events of small magnitude or intensity.

Watersheds in northern Jamaica show the same morphometric characteristics as watersheds in south-
ern portions of the mountainous eastern part of the island. Drainage density is similar on both sides.
Both sides of the island experience high rainfall (greater than 3,000 mm/year). However, on the south,
rain is highly seasonal (Gupta (1973)). Both the ‘more arid’ southern part and the north are hit by
hurricane storms and trade winds cyclones while frontal systems derived from the northeast provide
a third source of precipitation on the northern flank. The effective, formative, storm type appears then
to be the hurricane, recurring roughly every ten years, which is both intensive and frequent over both
sides of Jamaica.

In subhumid Galilee, northern Israel, the rocks are mostly massive dolomites and limestones, yet
the landscape appears to be sculpted by flowing water not solution. Karst features are not predominant,
and most first order valleys do not follow fracture systems. However, more than 80 per cent of the
denuded material is removed by carbonate solution, transported by percolating water and discharged
by springs. Here moderate to intensive rainstorms producing runoff and erosion shape the landscape,
determining the siting of first-order streams and the shape of hillslope profiles. Yet the topography
is being reduced by solution and percolation processes which remove most of the denuded materials
but do not determine the shape of most landforms (Gerson (1974)).

Tropical Storm Agnes was the most intensive storm in recorded history in the Mid-Atlantic provinces
in the United States; yet the higher intensities recorded (350 mm/day) did not trigger slope failure
in the Piedmont province nor was overland flow widespread over the wooded natural hillslopes. Trans-
port in the existing drainage net was accelerated, but new channels were not initiated. The location
of small valleys over much of the Piedmont landscape may be consequent upon joint systems in the
rock and weathering and solution processes play a major role in formation of the hilly topography
(Bunting (1961), Cleaves et al. (1970)).

In contrast, the same rainfall in the Appalachian Valley and Ridge Province initiated landslides
over wide areas (Costa (1973) unpublished). These and other exposed areas, however, do not seem
to become part of the open channel network. Over periods of decades vegetation invades the exposed
area gradually reducing the difference in relief, initially 1 to 2m, between landslide scar and adjacent
rubble levée (Mann (1974)), although evidence of their existence remains as ridges on the forest floor
and alluvial fans at the junction of hillslopes and valley floor. Bogucki (1976), reviewing historical
records for the southern Appalachians, suggests that intense heavy rainfalls which produce major slides
in the highlands have recurrence intervals of 100 years or more. Many remain clearly visible more
than two decades after initiation despite gradual recolonization by vegetation (Bogucki (1976), Mann
(1974)).

Sliding on hillslopes is an important geomorphic process in many mountainous, humid regions. For
example, Tanaka (1976) estimates that periodic debris avalanching occurs with roughly a 5-year fre-
quency, and extraordinary avalanches triggered by earthquakes (see below) with recurrence intervals
of 100 years. While the denudation rates of frequent slides and soil erosion on vegetated slopes are
within an order of magnitude of the rates generated by the rarer events, the scarred area created by
episodic events appears to be obliterated at a rate of roughly 0-038 per year (p. 161).

Recurrence intervals of hillslope forming or scar producing storms vary from region to region and
within a region, depending upon many other variables. Indeed, the recurrence intervals given here are
regional and do not imply that a specific event reoccurs on precisely the same patch of ground. The
probability that this will occur is considerably less than that a comparable event will recur within
the area. In the examples given in Table I recurrence intervals of threshold or formative events range
from 5 (Japan) to more than 100 years (Southern Appalachians). In wet-tropical and monsoon montane
environments, slides are the dominant hillslope process, removing the thickening soil and non-weather-
able mantle, and exposing further rock to intensive weathering and soil formation. Amphitheatre valleys
in montane landscapes in Hawaii (Scott and Street (1956)) landslides in New Guinea (Simonett and
Rogers (1970)) and in Hong Kong (So (1971)) are illustrative examples. Characteristic slide scars and
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The examples cited here of hillslope denudation and alterations of hillslope form suggest that events
casually termed ‘catastrophic’ may in fact be normal or common in many environments. The relative
importance of individual events, however, cannot be measured solely in terms of recurrence interval
or magnitude of denudation or erosion. On hillslopes, as in channels, both time and magnitude have
significance only in terms of the continuous processes typical of a given climatic region. The intensity
of precipitation may be the same in a tropical and in an arid region, but both the rarity and the
impact of a rainfall of high intensity will clearly be vastly different. In arid regions and in small drainage
basins denudation in solution or as clastic material follows roughly similar patterns with clastic transport
and higher flows proportionately more important than in humid regions or large drainage basins.

For many landforms a relative scale measuring the significance of erosion or deposition by high
magnitude events appears to be associated with a relative time scale related to climate and vegetation
which influence the rate at which recovery of specific forms takes place following changes produced
by a large event. Relative scales expressing both magnitudes of force and durations of time, as used
illustratively in this paper, could be constructed to characterize a range of climates, landforms, and
time. These, of course, are broad generalizations. Even the use of mean annual, as opposed to seasonal
sediment load, requires further inquiry (see Wilson (1973)). More important, at present available data
on recovery times following major events on rivers and hillslopes are not sufficient to permit us to
make a preliminary quantitative generalization. Information is beginning to accumulate on the geomor-
phic effects of large events in diverse regions, and on the much less dramatic process of recovery which
may permit such generalization.
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