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ABSTRACT
Recent observations of an association between forearc basins and slip during subduction

thrust earthquakes suggest a link between processes controlling upper plate structure and
seismic coupling on the subduction-zone thrust fault. We present a mechanism for the
formation of these basins where sedimentation occurs on landward-dipping segments of
the subduction wedge, which itself is actively growing through the accretion of material
from the subducting plate. Our numerical simulations demonstrate that sedimentation
stabilizes the underlying wedge, preventing internal deformation beneath the basin. Max-
imum slip during great-thrust earthquakes tends to occur where sedimentary basins sta-
bilize the overlaying wedge. The lack of deformation in these stable regions increases the
likelihood of thermal pressurization of the subduction thrust, allows the fault to load
faster, and allows greater healing of the fault between rupture events. These effects link
deformation of the subduction wedge to the seismic coupling of the subduction thrust.

Keywords: forearc basins, subduction zone, critical wedge, numerical modeling, subduction
wedge, subduction thrust earthquakes.

INTRODUCTION
The largest and most destructive earth-

quakes occur on subduction-zone thrust faults,
where oceanic plates are consumed by under-
thrusting beneath adjacent plate margins (Kan-
amori, 1986). The slip that occurs during
earthquakes only accounts for part of the total
convergence between the oceanic plate and
overriding plate as evident from variations in
the degree of seismic coupling, defined as the
ratio of seismic slip to total slip (Scholz,
1989). Seismic coupling varies spatially along
a typical subduction zone, and yet remains rel-
atively steady over multiple earthquake cycles
(Thatcher, 1990). Evidence supporting the ex-
istence of variations in seismic coupling in-
cludes the observation that earthquake slip
tends to occur in a patchy pattern along these
faults. The areas of greatest seismic slip, and
hence the greatest seismic coupling, are re-
ferred to as asperities (Lay et al., 1982; Kan-
amori, 1986; Thatcher, 1990). For example,
subduction-thrust earthquakes along the Nan-
kai suduction zone off southwest Japan (Fig.
1) show this characteristic behavior with seis-
mic slip varying both parallel and normal to
the strike of the subduction zone. Ultimately,
the total magnitude of a subduction earth-
quake depends on the amount of slip and the
total area over which it occurs, pointing to the
importance of determining the physical con-
trols on the distribution of seismic asperities.

Many studies have focused on the stress
state, rheology, or temperature of the subduc-
tion thrust as an explanation for the distribu-
tion of seismic coupling (e.g., Kanamori,
1971; Kelleher et al., 1974; Ruff and Kana-
mori, 1980; Tichelaar and Ruff, 1993; Hynd-
man et al., 1995). However, deformation of
the upper plate is also thought to affect the
size and distribution of earthquakes (Mc-
Caffrey, 1994). Two recent studies (Song and
Simons, 2003; Wells et al., 2003) show that
seismic asperities preferentially occur where
the overriding plate is overlain by forearc ba-
sins (Fig. 1), which suggests that the config-
uration of the overriding plate exerts a strong
influence on seismic behavior of the underly-
ing subduction thrust.

In regions where sedimentary material from
the oceanic plate is being actively accreted to
the margin, the upper plate tends to deform
into a wedge-shape profile that tapers to a
point where the subduction thrust reaches the
surface (Davis et al., 1983) (Fig. 1B). Forearc
basins represent a significant departure from
this simple geometric form, yet their forma-
tion is also a consequence of permanent de-
formation of the overriding plate in response
to subduction and accretion. We consider here
the mechanics and tectonic evolution of fore-
arc basins within an actively accreting and de-
forming subduction wedge. Our analysis is
based on numerical experiments using a cou-

pled mechanical-thermal model (Willett and
Pope, 2003; Willett, 1992) that has been mod-
ified to simulate the evolution of a subduction
wedge in response to shear tractions and the
accretion of a thin sedimentary layer from the
subducting oceanic plate (Fig. 2A). A detailed
description of the numerical model is given in
the Data Repository.1

MODEL RESULTS
The long-term evolution (over millions of

years) of a typical subduction wedge is illus-
trated for two cases: Model 1 shows the evo-
lution for a case where topographic depres-
sions receive no sediment (Fig. 2B; Fig. DR2
and Video DR1 [see footnote 1]), and Model
2 shows the evolution of a margin where to-
pographic depressions are filled to capacity
with sediment (i.e., ‘‘fill to spill’’) (Fig. 2C;
Fig. DR3 and Video DR2). The results shown
here have a convergence velocity vc of 50 km/
m.y. and an accretionary thickness h of 2.5 km
(Fig. DR1), indicating an accretionary flux of
125 km2/m.y. The accretionary flux deter-
mines the rate at which the model wedges
grow. For example, the Cascadia margin has

1GSA Data Repository item 2006018, details for
numerical model, Figures DR1–DR3, and videos of
models 1 and 2, is available at www.geosociety.org/
pubs/2006.htm, or on request from editing@
geosociety.org or Documents Secretary, GSA, P.O.
Box 9140, Boulder, CO 80301-9140.
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Figure 1. A: Forearc basins, dotted black lines (Sugiyama, 1994), of the Nankai subduction
zone in southwest Japan are associated with free-gravity anomaly lows (color field) (Sand-
well and Smith, 1997). Dashed white lines indicate seismic slip (2 m contour interval) during
the 1968 Mw 7.5 earthquake (black star) (Yagi and Kikuchi, 2003) and combined 1944 Mw 8.1
(white star), and 1946 Mw 8.3 (gray star) earthquakes (Sagiya and Thatcher, 1999). B: Inter-
preted crustal structure (Nakanishi et al., 2002), free-air gravity anomaly, and seismic slip
during 1944 Mw 8.1 and 1946 Mw 8.3 earthquakes along line A–A9. Gravity low and maximum
seismic slip during 1944 and 1946 great-thrust earthquakes are associated with forearc
basins. Colors in cross section correspond to the following interpreted lithologies and p-
wave velocities: light blue: oceanic sediments (1.7–2.0 km/s); dark blue: oceanic crust (4.5–
6.9 km/s); light yellow, orange, and brown: accreted sediments in subduction wedge (1.6–
2.5 km/s, 2.0–2.9 km/s, and 3.1–4.7 km/s respectively); green, older crust (5.0–5.9 km/s).
(Adapted from Wells et al., 2003.)

Figure 2. Numerical models for plane-strain, viscous-plastic deformation of a subduction
wedge driven by basal traction and sediment accretion (see material in Data Repository
[see footnote 1]). Color field shows strain rate (second invariant of strain rate tensor), and
Lagrangian mesh shows integrated deformation. A: Model immediately after start of con-
vergence representing a continental margin prior to initiation of subduction. B: Model 1 (no
sedimentation) at 5 m.y. Lagrangian mesh and strain rate show active deformation through-
out wedge, from trench to forearc high. Wedge deformation is primarily plastic as indicated
by localizations in strain-rate field. (See Fig. DR2 and Video DR1 in Data Repository for
additional details.) C: Model 2 (sedimentation) shown at 5 m.y. with parameterization iden-
tical to Model 1 except that topographic basin is filled with sediment with material properties
identical to rest of the wedge. Strain rate, Lagrangian mesh, and synthetic stratigraphy of
the basin (white lines) indicate little deformation of forearc basin or underlying wedge. (See
Fig. DR3 and Video DR2 in Data Repository for additional details.)

an accretionary flux of ;50 km2/m.y. (Paz-
zaglia and Brandon, 2001), which would mean
that it would take 2.5 times longer to evolve
to the same state represented by the models
shown here.

Both models show the development of the
main morphological features typical of forearc
regions at modern convergent margins (Karig,
1974; Dickinson and Seely, 1979) (Fig. 1B).
A bathymetric trench marks the surface trace
of the subduction thrust, and migrates seaward
as the wedge grows by accretion. Landward
of the trench, the seafloor rises to a topograph-
ic and structural high that separates the lower
trench slope from a shallow topographic de-
pression or basin. Farther landward, the sur-
face rises again, reaching a maximum at the
forearc high. The active subduction thrust is
located along the base of the model, extending
from the trench landward. Earthquake rupture
would be expected along the thrust where
temperatures are low enough for seismogenic
failure to occur (,;3508C) (e.g., Hyndman et
al., 1995).

In Model 1 (Fig. 2B), the entire subduction
wedge from the trench to the forearc high is
involved in accretion-driven deformation, as
shown by high strain rates and pervasive de-
formation of the Lagrangian mesh. The wedge
shows a steady landward increase in thickness,
but, for reasons discussed below, the increas-
ing dip of the subducting plate causes a de-
pression to form seaward of the forearc high.
Temperatures in the wedge beneath the forearc
high are sufficient (.3508C) to activate vis-
cous deformation, which explains the high
strain rates and strong uplift of the forearc
high.

Continental margins are commonly charac-
terized by a high sediment supply derived
from the continental interior. The closed fore-
arc depression in Model 1 is an ideal trap for
these sediments. In Model 2, otherwise iden-
tical to Model 1, the depression is kept filled
with sediment throughout the evolution of the
subduction wedge (Fig. 2C; Fig. DR3 and
Video DR2 [see footnote 1]). A comparison
between the models shows that Model 2 has
very low strain rates and relatively little de-
formation of the wedge beneath the filled ba-
sin, whereas strain rates remain large seaward
of the basin and beneath the forearc high.

MODEL INTERPRETATION
The theory of critical wedges (Davis et al.,

1983; Dahlen, 1984) provides a simple expla-
nation for the development of these basins and
the contrasting amounts of deformation within
the wedge beneath the basins. Davis et al.
(1983) were first to show that the wedge-
shaped body of rock and sediment at subduc-
tion zones tends to establish a critical taper
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Figure 3. Relationship between surface
slope a and subduction thrust dip b for a
minimum-taper critical Coulomb wedge. So-
lution is given for 3 values of fluid pressure
ratio lb on the subduction thrust, with other
variables held constant: wedge friction w 5
328, subduction thrust wb 5 328, wedge fluid
pressure ratio l 5 0.38. Path i to ii repre-
sents the surface slope of a critically ta-
pered wedge with a thrust that increases in
dip landward. Landward increase in fluid
pressure on the basal thrust also results in
a landward decrease in surface slope (i to
iii). Path ii to iv illustrates influence of sed-
imentation. Filling of topographic depres-
sion results in an increase of a to zero,
which stabilizes the wedge beneath the ba-
sin. We refer to these basins as negative-a
basins.

blunt enough that the wedge, given its intrin-
sic frictional strength, is able to overcome the
frictional resistance to slip on the underlying
subduction thrust. The accretion of new ma-
terial at the front and base of the wedge causes
it to increase in size. As long as the effective
strength of the wedge and the subduction
thrust remain constant, the wedge maintains
the same critical taper. For a frictional wedge,
this critical taper is a function of the basal
thrust dip b, surface slope a, friction angles
for the wedge w and basal thrust wb, and pore
fluid pressure ratio within the wedge l and
basal thrust zone lb (Fig. 3). This relationship
defines the minimum critical taper and pre-
dicts a. Wedges with a less than critical lack
the bulk strength to slide on the basal thrust
and must deform internally to increase taper
so that slip on the basal thrust is possible. In
contrast, wedges with a greater than critical
are referred to as stable given that the shear
traction on the basal thrust is too small to
cause deformation within the overlying
wedge.

All subduction zones show a landward in-
crease in the dip of the subduction thrust fault
b due to broad flexing of the downgoing plate
from its own negative buoyancy and loading
by the overlying plate. The critical-taper con-
cept indicates that as b increases, a decreases
(Fig. 3). If b becomes large enough, a will
become negative and the wedge will exhibit a
landward-dipping surface slope. The result
will be a closed depression, as shown in Mod-

el 1, where the wedge remains everywhere
critical (e.g., i to ii in Fig. 3). A similar de-
pression can also form by a landward decrease
in effective strength of the subduction thrust,
or a landward increase in effective strength of
wedge material. Potential causes for this be-
havior are a landward increase in fluid pres-
sure along the subduction thrust (i to iii in Fig.
3) or increasing lithification of wedge
material.

In Model 2, the depression is filled by
trapped sediments, causing the wedge to be-
come blunter than critical by increasing the
surface slope from a negative value (ii in Fig.
3) to horizontal (a 5 08) (iv in Fig. 3). Since
in this model a is greater than the critical val-
ue, the wedge beneath the sedimentary basin
has a stable taper. The lack of deformation be-
neath the basin in our numerical model re-
flects the fact that stable frictional wedges do
not deform internally (Fig. 2C). Reflection
profiles for accreting subduction wedges (e.g.,
Scholl et al., 1987) show that forearc basins
of this type typically remain little deformed
during their evolution, supporting our conclu-
sion that the underlying wedge is stable and
undeforming, not critical. We refer to these
basins as negative-a basins, given that the ba-
sinal depression is formed by reversal in the
surface slope above a critical wedge. This
mechanism is easily distinguished from other
interpretations for the formation of forearc ba-
sins, such as tectonic erosion at the base of
the wedge (Wells et al., 2003) or by elastic
loading during the earthquake cycle (Song and
Simons, 2003).

DISCUSSION AND CONCLUSIONS
We conclude that the basins observed along

the Nankai subduction zone (Fig. 1A), and
similar basins along other actively accreting
subduction margins (Pavlis and Bruhn, 1983;
Wells et al., 2003; Song and Simons, 2003),
are negative-a basins. Beneath these basins,
the subduction wedge is stable and has little
permanent internal deformation. In contrast,
regions that lack negative-a basins are more
likely to be critical and thus to have pervasive
internal deformation.

An important question is why does seismic
coupling appear to correlate with forearc ba-
sins (Wells et al., 2003; Song and Simons,
2003)? The slip behavior of a fault zone is
thought to be related to the time- and rate-
dependence of the frictional properties of the
fault (Scholz, 1989; Marone, 1998a, 1998b;
Scholz, 1998). In particular, Marone (1998a,
1998b) argues that fault zones become more
prone to seismic slip as the rate of loading of
the fault zone increases. We expect the loading
rate of the subduction thrust to be greatest
where the overlying wedge is stable, given

that nearly all plate convergence is taken up
as discrete slip on that thrust. The loading
would be slower in areas where the overlying
wedge is critical, given that deformation of the
wedge accommodates more of the plate con-
vergence. In addition, the stick-slip process re-
quires an alternation between rupture and
healing of the fault zone. The subduction
thrust moves less frequently beneath a stable
wedge, given that the upper plate of the fault
zone does not deform. This situation implies
long hold times, where the fault zone remains
stationary. Experiments by Marone (1998a,
1998b) show that the stress drop at failure in-
creases with longer hold time. Wibberley and
Shimamoto (2005) argue that thermal pressur-
ization is the process dominating the level of
stress drop during earthquakes. This mecha-
nism requires low permeability in the fault
zone so that thermally induced pore fluid pres-
sures can be maintained during the rupture
event. The lack of deformation in a stable
wedge would favor the development of low
permeability above the subduction thrust. Ac-
tive deformation within an overlying critical
wedge would increase permeability and inhib-
it thermal-induced overpressures. Any or all
of these processes suggest that seismic cou-
pling should be greatest beneath stable regions
of the subduction wedge.

Our models demonstrate that changes in
slab dip can lead to the formation of a
negative-a basin, which in turn will stabilize
the subduction wedge. We note that this result
can be caused by other factors. For instance,
spatial variations in fluid pressure on the sub-
duction thrust (Kastner et al., 1998) or varia-
tions in wedge strength, as occurs by lithifi-
cation (Zhao et al., 1986), could cause
changes in taper similar to those caused by
changes in slab dip.

Wedge stability is not the only factor influ-
encing the slip behavior of subduction zones
(e.g., Kanamori, 1971; Kelleher et al., 1974;
Ruff and Kanamori, 1980; Tichelaar and Ruff,
1993). Temperature plays an important role in
influencing the downdip extent of the seis-
mogenic zone on subduction thrusts (Hynd-
man et al., 1995). Our modeling shows that
deformation mechanisms within the overlying
wedge change from frictional to viscous
where the subduction thrust reaches 300–
3508C (Fig. 2C), which roughly coincides
with the limiting temperature for seismic slip
on the subduction thrust. The steeper slopes
on the seaward side of the forearc high mark
this transition from frictional to viscous de-
formation. This relationship may account for
the observation of Ruff and Tichelaar (1996)
that modern coastlines coincide with the
downdip limit of seismic rupture at many sub-
duction zones.
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It is important to note that some subduction
wedges may not be capable of reaching a
negative-a taper. The wedge may be too
small, the subduction thrust too strong, the dip
of the thrust too shallow, or the subduction
wedge too weak or too hot. In these cases, we
would not expect the critical state of the sub-
duction wedge to influence seismic coupling
on the thrust.
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Formation of forearc basins and their influence on subduction zone 

earthquakes. 
Christopher W. Fuller, Sean D. Willett, and Mark T. Brandon

 Geology, v. 34, no. 2, p. 65–68 (February 2006)

In the footnote for Data Repository item 2006018, the link to the Data 
Repository item was incorrect. The correct link is www.geosociety.org/
pubs/ft2006.htm.
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