Evidence for Persistent Flow and
Aqueous Sedimentation
on Early Mars
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Landforms representative of sedimentary processes and environments that occurred
early in martian history have been recognized in Mars Global Surveyor Mars Orbiter
Camera and Mars Odyssey Thermal Emission Imaging System images. Evidence of
distributary, channelized flow (in particular, flow that lasted long enough to foster
meandering) and the resulting deposition of a fan-shaped apron of debris indicate
persistent flow conditions and formation of at least some large intracrater layered
sedimentary sequences within fluvial, and potentially lacustrine, environments.

The distribution in space and time of liquid
water on Mars (/—4) remains unresolved, de-
spite an increasing base of observational data
about its influence on geological materials. In
part, this gap in our knowledge arises from the
lack of direct observation of the attributes of
sedimentary rocks and deposits that best record
their mode and environment of origin: the size,
shape, and composition of constituent clasts,
and the composition of any chemically precip-
itated materials. It also arises in part from the
paucity of small-scale landforms generally di-
agnostic of the processes of emplacement. We
report here the discovery of a landform com-
plex whose location, planimetric and topo-
graphic form, structure, and erosional expres-
sion are characteristic of such processes and
uniquely reflect materials deposited within an
aqueous sedimentary environment.

Setting. The features were discovered in
high-resolution (1.4 to 6.0 m/pixel) images ac-
quired by the Mars Global Surveyor (MGS)
Mars Orbiter Camera (MOC) (5—7). Located in
the Erythraeum region of Mars, the landform
complex is associated with valleys that traverse
the intercrater plains north of Holden Crater
(26°S, 34°W, 150 km in diameter) and enter an
unnamed crater, 65 km in diameter, located
northeast of Holden at 24.3°S, 33.5°W (hereaf-
ter Holden NE Crater; Fig. 1). In addition to
MOC images, pictures from the Mars Odyssey
Thermal Emission Imaging System ( THEMIS)
(8, 9) and the Viking orbiter cameras were used
to place the higher resolution MOC observa-
tions within their regional context, and MGS
Mars Orbiter Laser Altimeter (MOLA) (10)
data were used to determine the regional and
local topography.

The region north of Holden Crater shows
attributes of a “textbook’ drainage basin, with 10
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or more valleys contributing to a trunk valley
that enters Holden NE Crater through its low,
western wall (Fig. 1). The valleys of this drain-
age system exhibit several characteristics, in-
cluding steep-walled, flat-floored, box-shaped
transverse cross sections, nearly uniform width
over most of their longitudinal course, irregular
variations in depth (leading to stepped longitu-
dinal profiles with occasional convex segments),
abrupt distal terminations, and few if any higher
order tributaries. These characteristics suggest
immature drainage, or—more likely, given its
size, extent, and geologic context—a drainage
system that is partly buried and partly exhumed.
The valleys “drain” an area of about 4000 km?.
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Distributary fan. At the distal end of
the drainage system, within the western por-
tion of Holden NE Crater, is a complex of
layered sedimentary rock and a fan-like land-
form (/1) consisting of a suite of sinuous
ridges (Fig. 2). The fan-shaped landform,
which is 13 km by 11 km and covers 115
km?, consists of at least three lobes, defined
planimetrically by cross-cutting ridges raised
above intervening smooth areas, together
standing above the surrounding intracrater
plain. The ridge complex has a low longitu-
dinal gradient [<0.35° (12)], a flat transverse
section, and a relatively steep distal front.
Three relations within these lobes are espe-
cially noteworthy: (i) the sinuous, meander-
ing nature of the ridge forms, in particular the
appearance of ridges resembling migrating
and cutoff meanders (Fig. 2A); (ii) the ex-
pression of three-dimensional stratigraphic
relations, as seen in the cross-cutting of ridg-
es and their interfingered position with re-
spect to light-toned, flat-lying strata (Fig.
2B); and (iii) a hierarchical size—planimetric
position—stratigraphic relation with narrow,
gently sinuous, distal ridge forms lower in the
sequence and larger, more broadly sinuous
proximal ridge forms higher in the sequence.

We interpret the landform in Holden NE
Crater to be the exhumed and/or eroded rem-
nant of a fluvial distributary fan. The sinuous
ridge forms are interpreted to result from
relief inversion of channels (/3), and the

Fig. 1. Regional setting of Holden NE Crater, Erythraeum region, Mars. Map base is a mosaic of
portions of THEMIS IR images 101737002, 101762002, 102461003, 103185002, 103210002,
103572002, 103597002, 104733002, and 104758002, in simple cylindrical projection at 48 m/pixel.
Topography, derived from MOLA data and relative to the martian datum, is shown in 200-m
contours, with alternate contours (400 m) denoted with thicker lines. The white box indicates the
location of Fig. 2.
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cross-cutting, stratigraphic, and size-position
relations are interpreted as evidence of pro-
gressive or progradational (/4) fluvial activ-
ity and emplacement of alluvial sediments.
Longitudinal and transverse variations in
some of the ridges (such as the proximal-to-
distal variation in channel width, as manifest-
ed by meander migration) suggest hetero-
geneity within the materials, with proximal
patterns reminiscent of terrestrial channels
with a substantial component of coarser ma-
terials (sand or gravel, which permit wider,

broader meanders to develop) and distal pat-
terns showing narrower channels with gentler
meanders suggestive of more homogeneous,
possibly smaller caliber materials. Along the
distal margins and as seen in erosional win-
dows within the lobes, individual inverted
channels grade into and are interbedded with
broader, thinner, mostly horizontal, light-
toned layers. Occasional outcrops of light-
toned rock and isolated, inverted-relief chan-
nel segments (e.g., MOC images R07-00821
and R07-01352) with similar erosional ex-

Fig. 2. Fan in Holden NE Crater. The main figure is a mosaic of portions of MOC images
M18-00020, E14-01039, E17-01341, E18-00401, E21-01153, E21-00454, E22-01159, E23-00003,
R06-00726, R08-01104, and R09-01067 in simple cylindrical projection at 3 m/pixel, showing a
three-lobed fan of ridge forms interpreted to be inverted channels. (A) Pattern of migrating and
cutoff meander of relief-inverted channel. (B) Superposition and cross-cutting relations between
two inverted channels and their deposits. Right side of (B) shows inverted channels merging with
layered materials seen in many other portions of the floor of Holden NE.

pression elsewhere in Holden NE Crater sug-
gest that units once more areally extensive
have been stripped away, except where the
upper fan materials have acted to protect and
preserve them. The 6 km?* volume of the fan
(overestimated because of the difficulty in
measuring the many erosional depressions
smaller than the MOLA data can resolve) is
about one-quarter of the exposed volume of
the valleys that fed it.

Implications. Three important issues in
martian geological studies are addressed by the
discovery of this landform: flow persistence,
formation of water-lain sedimentary deposits
(with implications for both longitudinal trans-
port of material through a martian fluvial sys-
tem and directly related and explicit evidence of
alluvial deposition), and the intimate relation
between materials directly linked to stream
transport and more broadly distributed layered
materials. In addition, some attributes of this
landform more speculatively address the issue
of bodies of standing water.

The question of whether water flowed
across the surface of Mars for long periods of
time has been debated since martian valley
systems were first discovered (/5). With the
exception of a few examples based on large-
scale planimetric patterns [e.g., the interpreta-
tions of the sinuosity of Nirgal Vallis as evi-
dence of meandering (/6)], most evidence has
been interpreted as indicating that water moved
across the surface in relatively short, intense
outbursts [i.e., forming outflow channels by
catastrophic flooding (/7-19)] or ephemeral
trickles of groundwater-fed base and seepage
flow [forming substantially smaller, relatively
tributary-free valleys (79, 20)]. The best evi-
dence for long-term persistent flow is provided
by the tight sinuosity and deep entrenchment of
a few valleys (e.g., Nanedi and Scamander
valles) and the occasional emergence of small-
er, leveed channels from beneath the colluvial
debris covering their floors. However, any an-
swers to critical questions—such as where the
water came from, whether such flow was con-
tinuous or episodic, and how long it took for a
100- to 200-m-wide stream to cut a canyon 800
km long, 3 km wide, and 1 km deep—remain
highly speculative. The fan in Holden NE Cra-
ter presents unequivocal evidence of persistent
flow in the form of evolving meanders. Al-
though it is not possible to establish the duration
of the flow, the conditions that create meanders
require time and continuity to permit the geom-
etry to develop and evolve (21).

The argument that water has played a major
role in eroding and transporting materials on
Mars can be challenged by citing the difficulty
in identifying any unequivocal evidence of the
deposits that must have formed if such transport
occurred. Three factors contribute to this chal-
lenge: our inability to see diagnostic features of
alluvial deposits associated with most large out-
flow channels and valley networks; the exis-
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tence of equally plausible, alternative interpre-
tations for the generally rare deposits found
where valleys enter craters or irregular inter-
crater depressions (22); and the absence of a
direct connection between valley systems and
the exposures of layered rock found in numer-
ous locations ranging from equatorial sites with-
in the Valles Marineris and craters of Arabia
Terra to intracrater occurrences in mid- to high
southern latitudes (e.g., Spallanzani Crater).

The fan in Holden NE Crater has mani-
fested more characteristics of fluvial erosion,
transport, and deposition than any previously
observed landform on Mars, as judged by its
position at the distal end of a network of
valleys, the specific imprints of the channels
seen on its surface, and the pattern of evolu-
tion of these channels over time as revealed
through erosion. The interbedding of light-
toned, flat-lying layered rock units with the
fan further strengthens the impression that
this location records the entire “life cycle” of
sedimentary materials: headwater erosion,
through-basin transport, alluvial deposition,
induration/lithification, and, ultimately, sec-
ondary erosion and exportation of fines, cre-
ating a residual, exhumed landscape. That all
of these events occurred suggests that the
landform complex is extremely ancient, as it
must date to a time in martian history when
persistent water flow could occur, after which
sufficient time must have elapsed for the
materials to be lithified and later eroded/
exhumed to their present state. Although it is
impossible to date martian surfaces from im-
pact craters in either an absolute or relative
sense, given the problems of burial and ex-
humation, martian valley networks and their
associated fluid flow are generally acknowl-
edged to represent attributes of early, or Noa-
chian, Mars [e.g., (2)].

The search for evidence of past bodies of
standing water on Mars has gained importance
in recent years because of its direct relevance to
NASA'’s objectives in astrobiology. We believe
that evidence developed from the interpretation
of Viking Orbiter images—in particular the
identification of and differentiation between
“fans,” “fan-deltas,” “Gilbert deltas,” and “del-
tas”—is equivocal (22). We cannot state with
certainty that the Holden NE fan resulted from
deposition to maintain and adjust base level (a
defining characteristic of a delta) where the
water conducted through the valleys to the west
entered and ponded within the crater, but there
are tantalizing hints that this indeed may have
been the case. To the extent that the information
can be gleaned from MOLA measurements
(and recognizing that the details are blurred by
other processes), the longitudinal profiles of
both valleys that fed the Holden NE fan are
steep and characteristically concave as they de-
scend into the crater, but transition over a very
short distance to be nearly flat as they connect
to the profile across the fan. The declivity of the
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fan surface itself is very low, and the distal and
lateral margins are steeper. The multilobate
form of the fan, and variations within each lobe,
mimic terrestrial deltas that avulsed during for-
mation. Finally, it has been posited that laterally
continuous, rhythmically layered (23), essen-
tially horizontal rock units on Mars may have
formed by deposition from standing water (6,
24). The intimate relation between the Holden
NE fan and stratified units within the same
crater is consistent with that view.
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An Early Cretaceous Tribosphenic
Mammal and Metatherian
Evolution

Zhe-Xi Luo,"?* Qiang Ji,>3 John R. Wible,” Chong-Xi Yuan*

Derived features of a new boreosphenidan mammal from the Lower Cretaceous
Yixian Formation of China suggest that it has a closer relationship to met-
atherians (including extant marsupials) than to eutherians (including extant
placentals). This fossil dates to 125 million years ago and extends the record
of marsupial relatives with skeletal remains by 50 million years. It also has many
foot structures known only from climbing and tree-living extant mammals,
suggesting that early crown therians exploited diverse niches. New data from
this fossil support the view that Asia was likely the center for the diversification
of the earliest metatherians and eutherians during the Early Cretaceous.

Marsupials are one of the three main lineages
of extant mammals (Monotremata, Marsupia-
lia, and Placentalia) (/, 2). Extant marsupials,
such as the opossum, kangaroo, and koala,
are a subgroup of the Metatheria, which also
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includes all extinct mammals that are more
closely related to extant marsupials than to
extant placentals (3). Both metatherians and
eutherians (including extant placentals) are
subgroups of the northern tribosphenic mam-
mal clade or Boreosphenida (2, 4, 5). Here we
report a new boreosphenidan mammal with
close affinities to metatherians, and discuss
its implications for the phylogenetic, biogeo-
graphic, and locomotory evolution of the ear-
liest eutherians and metatherians.
Sinodelphys szalayi (6) gen. et sp. nov. is
distinguishable from all mammals (7-11)
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previously known from the Yixian Formation
[125 million years ago (Ma) (/2)] by a long
list of apomorphies (/3, /4). Numerous den-
tal and skeletal apomorphies also distinguish
Sinodelphys from all Cretaceous eutherians
(including Eomaia from the Yixian Forma-
tion) (2, 10, 15—-18). Sinodelphys is also more
derived than the stem boreosphenidans (4)
outside the therian crown group (metathe-
rians + eutherians) in several dental apo-
morphies, but is less advanced than other
metatherians including Deltatheridium (3) in
dental formula (13, 14). Hairs are preserved
as carbonized filaments and impressions
around the torso of the holotype (Fig. 1). The
pelage appears to have both guard hairs and
denser underhairs close to the body surface.

Description and comparison. Sinodel-
phys szalayi is more closely related to extant
marsupials than to extant placentals and
stem taxa of boreosphenidans in its many
marsupial-like apomorphies in the skeleton
and anterior dentition (Fig. 1). The posterior
upper incisors (I3, 14) are mediolaterally
compressed with an asymmetrical, lanceolate
(nearly diamond) outline in lateral view. This
feature is characteristic of “didelphid-like”
marsupials and the stem metatherians for
which incisors are known (/9-24), but it is
absent in all known Cretaceous eutherians
and mammals outside crown Theria (7, 10,
25-27). The first upper premolar (P1) is pro-
cumbent and close to the upper canine, fol-
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